
The Power of Hybrid – Informix & JSON

Scott Pickett

WW Informix Lab Services
For questions about this presentation, email to: spickett@us.ibm.com

© 2021 IBM Corporation

mailto:spickett@us.ibm.com

Agenda

▪ The Power of Hybrid –

Informix and JSON

▪ Informix & JSON: Use Cases

▪ Informix & JSON:

▪ “Nothing Like the Present”

▪ NoSQL – Feature Checklist

▪ The Wire Listener

▪ Sharding

▪ MongoDB Utilities &

Informix

▪ Useful Informix Capabilities

Over Collections

▪ Informix NoSQL

Aggregation Framework

▪ MongoDB Application

Source Drivers & Informix

▪ Additional JSON

Enhancements

▪ MQTT & Informix

▪ Appendicies

© 2021 IBM Corporation2

The Power of Hybrid – Informix and JSON

© 2021 IBM Corporation

Why JSON

▪ Rapid Application Prototyping
– Schema rides as objects inside the JSON Script, not as a separate item. Allows

for constant unit test and retest as logic expands
• Schemas change quite quickly in modern apps as business needs change.

• Apps have shorter production lives and even shorter life-cycles as a result

• Knows and understands JSON natively.

• No need to normalize per se.

• 1 to 1 and many to 1 RDBMS relationships do not apply here.

– Less bureaucratic
• Stripped down IS organizations, lean and mean

• Programmer can be the DBA, system administrator as well.

▪ Scalability
– Scalability is not by database tuning per se and adding resources, but rather by

sharding (fragmenting the data by a key) the data when necessary across

cheap, inexpensive commodity network hardware
• Automatic data rebalancing across the shards by key occurs during the shard

operation.

▪ Costs of initial “up and running” are less

▪ Quicker project completion times
© 2021 IBM Corporation4

Informix as a Hybrid Data Storage Database

▪ Many of NoSQL customers are enterprise that have both relational

and non-relational data sitting in the same facility and need to make

sense of the data they have for business purposes.

▪ Some NoSQL databases have no transaction capabilities in the SQL

sense
– Informix will enforce transactions on all application statements, with

consistency assured at the end of the transaction

– Informix is transactional, encrypted, and handles SQL and NoSQL data in the

same instance, all at once

© 2017 IBM Corporation11

Informix as a Hybrid Data Storage Database

▪ Joining noSQL and SQL based queries in the same statement is

possible within Informix
– Many customers using NoSQL in production circumstances with large

document store databases need to join this data to their existing SQL based

database repositories for business purposes, often stored, housed and queried

separately:
• Informix can join the two kinds of data

❑ Document store portion stored natively in a BSON as a single row data type within Informix,

accessed as JSON, with a set full set of functions to access the document store data.

© 2017 IBM Corporation12

Questions

© 2021 IBM Corporation14

Informix & JSON: Use Cases

© 2021 IBM Corporation

New Era in Application Requirements

▪ Store data from web/mobile application in their

native form
– New web applications use JSON for storing and

exchanging information

– Very lightweight – write more efficient applications

– It is also the preferred data format for mobile application

back-ends

▪ Move from development to production in no time!
– Ability to create and deploy flexible JSON schema

– Gives power to application developers by reducing

dependency on IT

– Ideal for agile, rapid development and continuous

integration

© 2017 IBM Corporation16

Typical NoSQL Use Cases - Interactive Web Mobile

▪ Online/Mobile Gaming
– Leaderboard (high score table)

management

– Dynamic placement of visual elements

– Game object management

– Persisting game/user state information

– Persisting user generated data (e.g.

drawings)

▪ Display Advertising on Web Sites
– Ad Serving: match content with profile and

present

– Real-time bidding: match cookie profile with

ad inventory, obtain bids, and present ad

▪ Communications

– Device provisioning

▪ Social Networking/Online

Communities

▪ E-commerce/Social Commerce
– Storing frequently changing product

catalogs

▪ Logging/message passing
– Drop Copy service in Financial

Services (streaming copies of trade

execution messages into (for

example) a risk or back office

system)

▪ Dynamic Content Management

and Publishing (News & Media)
– Store content from distributed

authors, with fast retrieval and

placement

– Manage changing layouts and user

generated content

© 2017 IBM Corporation17

Why NoSQL?

▪ The Three Vs:
– Velocity – high frequency of data

arrivals

– Volume – BigData

– Variability – unstructured data,

flexibility in schema design

▪ New data interchange formats
– JSON (JavaScript Object Notation)

– BSON (Binary JSON)

– Both implemented to industry

standards

▪ Scale-out requirements across

heterogeneous environment
– Cloud computing

▪ Non-traditional data management requirements driven by Web 2.0

companies
– Document stores, key-value stores, graph and columnar DBMS

© 2017 IBM Corporation18

What is a NoSQL Database?
▪ Not Only SQL or NOt allowing SQL

▪ A non-relational database management systems
– Does not require a fixed schema

– Avoids join operations

– Scales horizontally

– No ACID (eventually consistent)

▪ Good with distributing data and fast application development

Provides a mechanism for storage and retrieval of data

while providing horizontal scaling.

© 2017 IBM Corporation19

IBM Use Case Characteristics for JSON

• Application not constrained by fixed pre-defined schema

• Ability to handle a mix of structured and unstructured data

Schema flexibility and
development agility

• Rapid horizontal scalability

• Ability to add or delete nodes dynamically in the Cloud/Grid

• Application transparent elasticity
Dynamic elasticity

• 24x7x365 availability

• Online maintenance operations

• Ability to upgrade hardware or software without down time
Continuous availability

• Ability to handle thousands of users

• Typically millisecond response time

Consistent low latency,
even under high loads

• Commonly available hardware (Windows & Linux,…)

• Commonly available hardware (Windows & Linux,…)Low cost infrastructure

• Easy of deployment

• Install, configure add to exiting environment in minutes

Reduced administration
and maintenance

© 2017 IBM Corporation20

Why Most Commercial Relational Databases cannot

meet these Requirements

•Relational schemas are inherently rigid

•Database design needs to be done before application is developed

•Different rows cannot have a different structures

Schema flexibility and
development agility

•Not a natural fit for RDBMS, due to requirement for strong consistency

•Scale-out requires partition tolerance, that increases latencyDynamic elasticity

•Requirement can be met, but at a significant cost

•Typically rolling version upgrades are complex in clustered RDBMSContinuous availability

•ACID requirements inherently introduce write latency

•There is no latency-consistency tradeoff knobs available

•Possible, but at a much higher cost (hardware, software or complexity)

Consistent low latency,
even under high loads

•Distributed RDBMS typically require specialized hardware to achieve performance

•Popular relational databases typically require several DBAs for maintenance and
tuning

Low cost infrastructure

•Often requires a significant DBA resourcesReduced administration
and maintenance

© 2017 IBM Corporation21

NoSQL Database Philosophy Differences

▪ No ACID
– No ACID (Atomicity, Consistency, Isolation, Durability)

– An eventual consistence model

▪ No Joins
– Generally single row/document lookups

▪ Flexible Schema
– Rigid format

© 2017 IBM Corporation22

Informix NoSQL Key Messages

▪ Mobile computing represents one of the greatest opportunities for

organizations to expand their business, requiring mobile apps to have

access to all relevant data

▪ Informix has embraced the JSON standard and up to version 4.2 of the

MongoDB API to give mobile app developers the ability to combine

critical data managed by Informix with the next generation mobile

apps

▪ Informix JSON lets developers leverage the abilities of relational

DBMS together with document store systems

© 2017 IBM Corporation23

Questions

© 2021 IBM Corporation24

Informix & JSON: Nothing Like the Present ……..

© 2021 IBM Corporation

Informix NoSQL High Level Functionality Comparison (1)

▪ SQL Data Native Types

▪ TimeSeries Native Type

▪ JSON & BSON Native Types
▪ 2 GB Maximum Document Size

▪ Extended JSON Date Support

▪ Hybrid Storage

▪ Hybrid Applications

▪ Sharding

▪ Type-less JSON Indexes

▪ Typed JSON Indexes

▪ Hybrid Storage as native types

▪ REST Compatible

▪ Intelligent Buffer Pool & Read Ahead

▪ Single Statement Transactions

▪ Multi-Statement Transactions

▪ Partial-Statement Transactions

▪ Row Lock Granularity

▪ Join Collections to SQL Tables

▪ Join Collections to Collections

▪ Join Collections to TimeSeries

▪ SPL Execution w/JSON & SQL

Types

▪ Text Search

▪ Table & Row Level Auditing

▪ Data Compression

▪ Web Based Graphical Admin

© 2021 IBM Corporation26

Informix NoSQL High Level Functionality Comparison (2)

▪ Cost Based Optimizer

▪ Run SQL Analytics Tools (i.e.

Cognos) on JSON Document and

SQL Tables

▪ BLU Acceleration on JSON data

▪ OLAP analytics on JSON Collections

▪ Distributed Access to Tables or

Collections

▪ Triggers on Collections or Tables

▪ Truncate Collections or Tables

▪ Enterprise Level Security

▪ Online Index Maintenance

▪ Native JSON Command Line

Processing

▪ Rolling Upgrades

▪ Single Point in Time Online Backups

▪ Read-Only Secondary/Slave

Servers

▪ Read-Write Secondary/Slave

Servers

▪ Diskless Secondary/Slave Servers
▪ Multiple Secondary/Slave Servers

▪ Gridded Tables or Collections

▪ Policy Based Failover

▪ Automatic Connection Re-Direction

▪ Shard Tables or Collections

▪ MQTT Supported

▪ Encryption at Rest

▪ Heterogenous Table Based

Replication

© 2021 IBM Corporation27

Informix Security

▪ Encryption
– At rest

– On the wires

– Server to server

– Client to server

– Backups

– Replication servers

▪ Authentication via O/S
– Don’t forget PAM for two factor authentication

▪ Managed users

▪ Off server security

▪ Roles

▪ DBSA

▪ Security directories
– Install

© 2021 IBM Corporation31

Basic Translation Terms/Concepts
Mongo/NoSQL Terms Traditional SQL Terms

Database Database

Collection Table

Document Row

Field Column

{"name":"John","age":21}

{"name":"Tim","age":28}

{"name":"Scott","age":30}

Name Age

John 21

Tim 28

Scott 30

Collection

Document
Key Value

Table

Row

© 2017 IBM Corporation32

The SQL to Create a Collection

▪ Formal definition of a collection used by the Wire Listener

▪ All collection tables in Informix that can hold JSON documents, have

the same 4 basic column names and data type definitions:
– Only the collection table name changes.

– Standard Table DDL subclauses apply (lock mode, extent size, compressed, etc.)

▪ JSON documents are stored whole in binary format in the column ‘data’

▪ Queries from both JSON and SQL can access this data.

CREATE COLLECTION TABLE mycollection

(

id char(128),

modcnt integer,

data bson,

flags integer

);

© 2017 IBM Corporation33

Questions

© 2021 IBM Corporation34

NoSQL – Feature Checklist

© 2021 IBM Corporation

JSON Features in Informix

Flexible Schema ▪ Use BSON and JSON data type.

▪ Complete row is stored in a single column

▪ BSON, JSON are multi-rep types and can store up to 2GB.

Access Key Value

Pairs within JSON

▪ Translate the Mongo queries into SQL expressions to access key-

value pairs.

▪ Informix has added expressions to extract specific KV pairs.

▪ Select bson_new(data, “{id:1, name:1, addr:1}”) from tab;

Indexing ▪ Support standard B-tree index via functional indexing.

▪ Type Less Index →

▪ Create index ix_1 on t(bson_extract(data, “id”);

▪ Typed Index → Create index ix_2 on t(bson_value_lvarchar(data,

“name”), bson_value_date(data, “expire”);

▪ Informix supports indexing bson keys with different data types.

Sharding ▪ Supports range & hash based sharding.

▪ Informix has built-in technology for replication.

▪ Create identical tables in multiple nodes.

▪ Add meta data for partitioning the data across based on range or

hash expressions.

© 2017 IBM Corporation36

JSON Features in Informix

Select ▪ Limited support required for sharding, Mongo API disallowing joins.

▪ The query on a single sharded table is transformed into a federated

UNION ALL query; includes shard elimination processing.

Updates

(single node)

▪ INSERT: Simple direct insert.

▪ DELETE: DELETE statement with

▪ WHERE bson_extract() > ?; or bson_value..() > ?

▪ UPDATE:

▪ bson_update(bson, “update expr”) will return a new bson after

applying the bson expression. Simple updates to non_sharded

tables will be direct UPDATE statement in a single transaction.

▪ UPDATE tab bsoncol = bson_update(bsoncol, “expr”) where …

Updates

(sharded env)

▪ INSERT – All rows are inserted to LOCAL shard, replication threads will

read logs and replicate to the right shard and delete from local node (log

only inserts underway).

▪ DELETE – Do the local delete and replicate the “delete statements” to

target node in the background

▪ UPDATE – Slow update via select-delete-insert.

Transaction ▪ Each statement is a distinct transaction in a single node

environment.

▪ The data and the operation is replicated via enterprise replication.

© 2017 IBM Corporation37

JSON Features in Informix

Isolation levels ▪ NoSQL session can use any of Informix isolation levels.

Locking ▪ Application controls only on the node they’re connected to.

▪ Standard Informix locking semantics will apply when data is

replicated and applied on the target shard.

Hybrid Access

(From MongoAPI

to relational

tables)

▪ INSERT – All rows are inserted to LOCAL shard, replication threads will

read logs and replicate to the right shard and delete from local node

(log only inserts underway).

▪ DELETE – Do the local delete and replicate the “delete statements” to

target node in the background

▪ UPDATE – Slow update via select-delete-insert.

Hybrid Access

(From SQL to

JSON data)

▪ Directly get binary BSON or cast to JSON to get in textual form.

▪ Use expressions to extract to extract specific key-value pairs.

NoSQL collections will only have one BSON object in the table. We

can “imply” the expressions when the SQL refers to a column.

▪ SELECT t.c1, t.c2 from t; ➔ SELECT bson_extract(t.data,

“{c1:1}”), bson_extract(t.data, “{c2:1}”) from t;

© 2017 IBM Corporation38

▪ Clients exchange BSON document with the server both for queries & data.

▪ Thus, BSON becomes a fundamental data type.

▪ The explicit key-value(KV) pairs within the JSON/BSON document will be

roughly equivalent to columns in relational tables.

▪ However, there are differences!
– The type of the KV data encoded within BSON is determined by the client

– Server is unaware of data type of each KV pair at table definition time.
• Application must keep track of the data types of the data

– No guarantees that data type for each key will remain consistent in the collection.

– The keys in the BSON document can be arbitrary;

– While customers exploit flexible schema, they’re unlikely to create a single

collection and dump everything under the sun into that collection.

– Due to the limitations of Mongo/NoSQL API, customers typically de-normalize the

tables
• (customer will have customer+customer addr + customer demographics/etc) to avoid

joins.

Flexible Schema

© 2017 IBM Corporation39

Flexible Schema – Informix Implementation

▪ Informix has a new data type, BSON, to store the data.

▪ Informix also has a JSON data type to convert between binary and

text form.

▪ BSON and JSON are abstract data types (like spatial, etc).

▪ BSON and JSON multi-representational types:

– Objects up to 4K is stored in data pages.

– Larger objects (up to 2GB) are stored out of row, in BLOBs.

• MongoDB limits objects to 16MB

▪ This is all seamless and transparent to applications.

© 2017 IBM Corporation40

Flexible Schema – Informix Implementation

▪ CREATE TABLE customer (data BSON)

▪ BSON is the binary representation of JSON.
– It has length and types of the key-value pairs in JSON.

▪ MongoDB drivers send and receive in BSON form.

© 2017 IBM Corporation41

Accessing KV pairs within JSON
▪ Extract Expressions/functions returning base type

bson_value_bigint(BSON, “key”);

bson_value_lvarchar(bsoncol, “key.key2”);

bson_value_date(bsoncol, “key.key2.key3”);

bson_value_timestamp(bsoncol, “key”)

bson_value_double(bsoncol, “key”);

bson_value_boolean(bsoncol, “key”);

bson_value_array(bsoncol, “key”);

bson_keys_exist(bsoncol, “key”);

bson_value_document(bsoncol, “key”)

bson_value_binary(bsoncol, “key”)

bson_value_objectid(bsoncol, “key”)

▪ Expression returning BSON subset. Used for bson indices.
bson_extract(bsoncol, “projection specification”)

▪ Expressions to project out of SELECT statement.
bson_new(bsoncol, “{key1:1, key2:1, key3:1}”);

bson_new(bsoncol, “{key5:0}”);

© 2017 IBM Corporation42

Accessing Key-Value (KV) pairs within JSON.

Mongo Query SQL Query

db.customers.find(); SELECT data::json
FROM customers

db.customers.find({},{num:1,na
me:1});

SELECT bson_new(data, '{ "num" : 1.0 ,
"name" : 1.0}')::bson::json
FROM customers

db.customers.find({},
{_id:0,num:1,name:1});

SELECT bson_new(data, '{_id:0.0, "num" : 1.0 ,
"name" : 1.0}')::bson::json
FROM customers

db.customers.find({status:”A”}) SELECT data::json
FROM customers WHERE
bson_value_lvarchar(data,"status")= “A"

db.customers.find({status:”A”},
{_id:0,num:1,name:1});

SELECT bson_new(data, '{ "_id" : 0.0 , "num" :
1.0 , "name" : 1.0}')::bson::json
FROM customers WHERE bson_extract(data,
'name‘)::bson::json::lvarchar = ‘{“status”:“A”}’

© 2017 IBM Corporation43

Indexing (1)

▪ Supports B-Tree indexes on any key-value pairs.

▪ Indices could be on simple basic type (int, decimal) or BSON

▪ Indices could be created on BSON and use BSON type comparison

▪ Listener translates ensureIndex() to CREATE INDEX

▪ Listener translates dropIndex() to DROP INDEX

© 2017 IBM Corporation44

Indexing (2)

Mongo Index Creation
Statement

SQL Query Statement

db.customers.ensureIndex({ord
erDate:1})

CREATE INDEX IF NOT EXISTS w_x_1 ON w
(bson_extract(data,'x') ASC) using bson (ns='{ "name" :
"newdb.w.$x_1"}', idx='{ "ns" : "newdb.w" , "key" : {"x" : [1.0 ,
"$extract"]} , "name" : "x_1" , "index" : "w_x_1"}') EXTENT SIZE
64 NEXT SIZE 64

db.customers.ensureIndex({ord
erDate:1, zip:-1})

CREATE INDEX IF NOT EXISTS v_c1_1_c2__1 ON v
(bson_extract(data,'c1') ASC, bson_extract(data,'c2') DESC)
using bson (ns='{ "name" : "newdb.v.$c1_1_c2__1"}', idx='{
"ns" : "newdb.v" , "key" : { "c1" : [1.0, "$extract"] , "c2" : [-1.0 ,
"$extract"]} , "name" : "c1_1_c2__1" , "index" :
"v_c1_1_c2__1"}') EXTENT SIZE 64 NEXT SIZE 64

db.customers.ensureIndex({ord
erDate:1}, {unique:true)

CREATE UNIQUE INDEX IF NOT EXISTS v_c1_1_c2__1 ON v
(bson_extract(data,'c1') ASC, bson_extract(data,'c2') DESC)
using bson (ns='{ "name" : "newdb.v.$c1_1_c2__1"}', idx='{ "ns"
: "newdb.v" , "key" : { "c1" : [1.0 , "$extract"] , "c2" : [-1.0 ,
"$extract"]} , "name" :"c1_1_c2__1" , "unique" : true , "index" :
"v_c1_1_c2__1"}') EXTENT SIZE 64 NEXT SIZE 64

© 2017 IBM Corporation45

Indexing - Examples

▪ Mongo Index Creation Statement

> mongo

MongoDB shell version: 2.4.9

connecting to: test

> use newdb

switched to db newdb

> db.customers.ensureIndex({orderdate:1})

▪ Informix SQL Query Statement

create index customers_orderdate_1 on customers (bson_extract(data, 'orderdate'))

using bson (ns='{ "name" : "newdb.customers.$orderdate_1"}',

idx='IfxDBObject { "ns" : "newdb.customers" ,

"key" : {"orderdate" : [1.0 , "$extract"]} ,

"name" : "orderdate_1" ,

"index" : "customers_orderdate_1"}'

);

© 2017 IBM Corporation46

Indexing - Examples

▪ Mongo Index Creation Statement

> mongo

MongoDB shell version: 2.4.9

connecting to: test

> use newdb

switched to db newdb

> db.customers.ensureIndex({orderdate:1,zip:-1})

▪ Informix SQL Query Statement

create index customers_orderdate_1_zip__1 on customers (

bson_extract(data,'orderdate') ,bson_extract(data,'zip') desc)

using bson (ns='{ "name" : "newdb.customers.$orderdate_1_zip__1"}',

idx='IfxDBObject { "ns" : "newdb.customers" ,

"key" : { "orderdate" : [1.0 , "$extract"] , "zip" : [-1.0 , "$extract"]} ,

"name" : "orderdate_1_zip__1" ,

"index" : "customers_orderdate_1_zip__1"}'

);

© 2017 IBM Corporation47

Indexing - Examples

▪ Mongo Index Creation Statement

> mongo

MongoDB shell version: 2.4.9

connecting to: test

> use newdb

switched to db newdb

> db.customers.ensureIndex({orderdate:1}, {unique:true})

▪ Informix SQL Query Statement

create unique index customers_orderdate_1 on customers (bson_extract(data,'orderdate'))

using bson (ns='{ "name" : "newdb.customers.$orderdate_1"}', idx=

'IfxDBObject { "ns" : "newdb.customers" ,

"key" : { "orderdate" : [1.0 , "$extract"]} ,

"name" : "orderdate_1" , "unique" : true ,

"index" : "customers_orderdate_1"}'

);

© 2017 IBM Corporation48

Indexing

db.w.find({x:1,z:44},{x:1,y:1,z:1})

▪ Translates to:

▪ SELECT bson_new(data, '{ "x" : 1.0 , "y" : 1.0 , "z" : 1}

▪ FROM w

▪ WHERE (bson_extract(data, 'x') = '{ "x" : 1.0 }'::json::bson) AND

▪ (bson_extract(data, 'z') = '{ "z" : 44.0 }'::json::bson)

▪ Estimated Cost: 2

▪ Estimated # of Rows Returned: 1

▪ 1) ifxjson.w: SEQUENTIAL SCAN

▪ Filters: (informix.equal(informix.bson_extract(ifxjson.w.data ,'z'),UDT)

▪ AND (informix.equal(informix.bson_extract(ifxjson.w.data ,'x'),UDT))

© 2017 IBM Corporation49

Indexing

▪ Creating Mongo index ….

▪ db.w.ensureIndex({x:1,z:1})

▪ …. Informix functional Index is built on bson expressions

create index w_x_1_z_1 on w (.bson_extract(data, 'x') ,bson_extract(data,'z'))

using bson (ns='{ "name" : "newdb.w.$x_1_z_1"}',

idx='IfxDBObject { "ns" : "newdb" ,

"key" : { "x" : [1.0 , "$extract"] , "z" : [1.0 , "$extract"]} ,

"name" : "x_1_z_1" ,

"index" : "w_x_1_z_1"}'

);

▪ Listener is aware of the available index and therefore generates right
predicates

© 2017 IBM Corporation50

Indexing

▪ Functional Index is built on bson expressions

CREATE INDEX IF NOT EXISTS w_x_1 ON

w (bson_extract(data,'x') ASC) using bson

(ns='{ "name" : "newdb.w.$x_1"}',

idx='{ "ns" : "newdb.w" ,

"key" : {"x" : [1.0 , "$extract"]} ,

"name" : "x_1" , "index" : "w_x_1"}')

EXTENT SIZE 64 NEXT SIZE 64

▪ Listener is aware of the available index and therefore generates right
predicates:

▪ db.w.find({x:1});

▪ gets translated to

▪ SELECT SKIP ? data FROM w WHERE bson_extract(data, 'x') = ?

© 2017 IBM Corporation51

Indexing - sqexplain
▪ db.w.find({x:5,z:5}, {x:1,y:1,z:1})

▪ Translates to:

▪ SELECT bson_new(data, ‘ifxDBObject{ "x" : 1.0 , "y" : 1.0 , "z" : 1 .0}')::bson

▪ FROM w

▪ WHERE (bson_extract(data, 'x') = '{ "x" : 5.0 }'::json::bson)

▪ AND (bson_extract(data, 'z') = '{ "z" : 5.0 }'::json::bson)

▪ Estimated Cost: 1

▪ Estimated # of Rows Returned: 1

▪ 1) ifxjson.w: INDEX PATH

▪ (1) Index Name: ifxjson.w_x_1_Z_1

Index Keys: informix.bson_extract(data,'x') informix.bson_extract(data,'z')

(Serial, fragments: ALL)

Lower Index Filter: (informix.equal(informix.bson_extract(ifxjson.w.data

,'z'),UDT)

AND informix.equal(informix.bson_extract(ifxjson.w.data ,'x'),UDT))

© 2017 IBM Corporation52

Transactions - Nosql Informix extension

▪ Informix Nosql transactional syntax for non-sharded queries:
– enable

• Enable transaction mode for the current session in the current database
❑ db.runCommand({transaction: “enable” }).

– disable
• Disable transaction mode for the current session in the current database.

❑ db.runCommand({transaction: “disable” }).

– status
• Print status information to indicate whether transaction mode is enabled and if

transactions are supported by the current database.
❑ db.runCommand({transaction: “status” }).

– commit
• If transactions are enabled, commits the current transaction. If transactions are

disabled, an error is shown.
❑ db.runCommand({transaction: “commit” }).

– rollback
• If transactions are enabled, rolls back the current transaction. If transactions are

disabled, an error is shown.
❑ db.runCommand({transaction: “rollback” }).

© 2017 IBM Corporation53

Transactions - Nosql Informix extension

▪ execute
– This optional parameter runs a batch of commands as a single transaction.

– If transaction mode is not enabled for the session, this parameter enables

transaction mode for the duration of the transaction.

– Command documents include insert, update, delete, findAndModify, and find
• insert, update, and delete command documents, you cannot set the ordered property

to false.

• Use a find command document to run SQL & NoSQL queries, but not commands.

• A find command document can include the $orderby, limit, skip, and sort operators.

• The following example deletes a document from the inventory collection and inserts

documents into the archive collection:

db.runCommand({"transaction" : "execute", "commands" : [{"delete":"inventory",

"deletes" : [{ "q" : { "_id" : 432432 } }] }, {"insert" : "archive", "documents" : [{

"_id": 432432, "name" : "apollo", "last_status" : 9}] }] })

‒ The execute parameter has an optional finally argument if you have a set of

command documents to run at the end of the transaction regardless of whether

the transaction is successful.

© 2017 IBM Corporation54

Transactions - Nosql Informix extension

▪ Example:

– db.runCommand({"transaction" : "execute", "commands" : [{"find" :

"system.sql", "filter" : {"$sql" : "SET ENVIRONMENT USE_DWA

'ACCELERATE ON'" } }, {"find" : "system.sql", "filter" : {"$sql" : "SELECT

SUM(s.amount) as sum FROM sales AS s WHERE s.prid = 100 GROUP BY

s.zip" } }], "finally" : [{"find":"system.sql", "filter" : {"$sql" : "SET

ENVIRONMENT USE_DWA 'ACCELERATE OFF'" } }] })

▪ All transaction commands for Informix work on non-sharded servers

only.

© 2017 IBM Corporation55

Transactions - Nosql Informix extension (1)

© 2017 IBM Corporation56

Transactions - Nosql Informix extension (2)

▪ mongos> db.runCommand({transaction: "enable"})

▪ { "ok" : 1 }

▪ mongos> db.city_info2.insert({ "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "ZA" })

▪ mongos> db.runCommand({transaction: "commit"})

▪ { "ok" : 1 }

▪ mongos> db.runCommand({transaction: "status"})

▪ { "enabled" : true, "supported" : true, "ok" : 1 }

▪ mongos> db.city_info2.find({ city: "RAINBOWVILLE" })

▪ { "_id" : ObjectId("533b12d41ab6204de9174506"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "MN" }

▪ { "_id" : ObjectId("533b02f51ab6204de9174503"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "CA" }

▪ { "_id" : ObjectId("533c4612385ecd075e57df09"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "ZA" }

▪ { "_id" : ObjectId("533b03c91ab6204de9174504"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "MA" }

▪ mongos> db.city_info2.update({ state: "ZA" }, { $set: { state: "NY" } })

▪ mongos> db.runCommand({transaction: "commit"})

▪ { "ok" : 1 }

▪ mongos> db.city_info2.find({ city: "RAINBOWVILLE" })

▪ { "_id" : ObjectId("533b12d41ab6204de9174506"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "MN" }

▪ { "_id" : ObjectId("533b02f51ab6204de9174503"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "CA" }

▪ { "_id" : ObjectId("533c4612385ecd075e57df09"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "NY" }

▪ { "_id" : ObjectId("533b03c91ab6204de9174504"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "MA" }

▪ mongos> db.city_info2.remove({ "$and" : [{ state : "NY", city: "RAINBOWVILLE" }] })

▪ mongos> db.runCommand({transaction: "commit"})

▪ { "ok" : 1 }

▪ mongos> db.city_info2.find({ city: "RAINBOWVILLE" })

▪ { "_id" : ObjectId("533b12d41ab6204de9174506"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "MN" }

▪ { "_id" : ObjectId("533b02f51ab6204de9174503"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "CA" }

▪ { "_id" : ObjectId("533b03c91ab6204de9174504"), "city" : "RAINBOWVILLE", "loc" : [-99.999999, 40.012343], "pop" : 9999, "state" : "MA" }

▪ Mongos>

© 2017 IBM Corporation57

Create and Drop Index

▪ mongos> db.city_info2.ensureIndex({ pop: 1 })
– Returns nothing if successful

▪ mongos> db.city_info2.dropIndex({ "pop" : 1 })

▪ { "ok" : 1, "nIndexesWas" : 2 }

© 2017 IBM Corporation58

What Indexes Do You Have on Your Collection?

▪ Below, one index is unique, the others are not:

© 2017 IBM Corporation59

Isolation levels

▪ Default isolation level is DIRTY READ.

▪ Change this directly or sysdbopen()

▪ You can also use USELASTCOMMITTED variable in the database

server configuration file ($ONCONFIG).

▪ If you’re using procedures for executing multi-statement transactions,

you can set it within your procedure.

© 2017 IBM Corporation60

Locking

▪ Page level locking is the default.

▪ You can change it to ROW level locks easily.

– ALTER TABLE jc MODIFY lock mode (row);

– DEF_TABLE_LOCKMODE server configuration file variable.

▪ SET LOCK MODE can be set via sysdbopen()

▪ Each statement is executed with auto-commit and locking semantics

will apply there.

© 2017 IBM Corporation61

Questions

© 2021 IBM Corporation62

The Wire Listener – How Informix

Communicates with MongoDB

© 2021 IBM Corporation

Client Applications & The Wire Listener
▪ Wire Listener supports existing MongoDB drivers

▪ Connect to MongoDB or Informix with same

application!

▪ $INFORMIXDIR/etc/jsonListener.jar

MongoDB

native Client

MongoDB

web browser

Mobile

Applications

MongoDB

Wire

Protocol

Informix

14.1

MongoDB

driver

MongoDB

© 2017 IBM Corporation64

Starting and Stopping the Wire Listener via sysadmin

▪ EXECUTE FUNCTION task("stop json listener");

▪ (expression) stop requested for localhost:27017

▪ EXECUTE FUNCTION task("start json listener");

▪ (expression) JSON listener launched. For status check

/opt/IBM/informix_12.10_1/jsonListener.log

▪ cat $INFORMIXDIR/jsonListener.log

▪ 2014-04-01 19:16:39 [JsonListener-1] INFO

com.ibm.nosql.informix.server.LwfJsonListener - JSON server

listening on port: 27017, 0.0.0.0/0.0.0.0

▪ Both JSON and Informix SQL commands can pass through this.

© 2017 IBM Corporation65

Starting and Stopping via the command Line

▪ java –jar $INFORMIXDIR/bin/jsonListener.jar –config

$INFORMIXDIR/etc/jsonListener.properties –start

▪ java –jar $INFORMIXDIR/bin/jsonListener.jar –config

$INFORMIXDIR/etc/jsonListener.properties –stop

▪ The standard editable jsonListener.properties file is located in

$INFORMIXDIR/etc

▪ Sample jsonListener.properties contents:

▪ listener.port=27017

▪ url=jdbc:informix-

sqli://localhost:17875/sysmaster:INFORMIXSERVER=lo_informix1210

_1;USER=ifxjson;PASSWORD=pj0D$XsMiFG

▪ security.sql.passthrough=true

▪ sharding.enable=true

▪ update.client.strategy=deleteInsert:

© 2017 IBM Corporation66

Notes on the Wire Listener

▪ Parameters in this file are one per line and settings are not dynamic

at this time.

▪ To enable sharding collections in JSON based apps using

“MongoDB”, you must turn on “sharding.enable=true”
– If sharding.enable=true then you are required to set one more parameter as

well, you must set update.client.strategy=deleteInsert.

▪ To enable Informix SQL pass thru in JSON based apps using

“MongoDB”, you must turn on “security.sql.passthrough=true”

▪ User name & password are optional
– O/S authentication used in its place.

▪ INFORMIXSERVER is usually a reserved port, not the main server

instance port, and is found in /etc/services and sqlhosts.

© 2017 IBM Corporation67

Three Server Cluster sqlhosts file – ol_informix1410_1

▪ cat $INFORMIXSQLHOSTS
▪ dr_informix1410_1 drsoctcp cte2 dr_informix1410_1

▪ lo_informix1410_1 onsoctcp 127.0.0.1 lo_informix1410_1

▪ g_ol_informix1410_1 group - - i=1

▪ ol_informix1410_1 onsoctcp cte2 ol_informix1410_1 g=g_ol_informix1410_1

▪ g_ol_informix1410_2 group - - i=2

▪ ol_informix1410_2 onsoctcp cte2 26311 g=g_ol_informix1410_2

▪ g_ol_informix1410_3 group - - i=3

▪ ol_informix1410_3 onsoctcp cte2 10756 g=g_ol_informix1410_3

© 2017 IBM Corporation68

Three Server Cluster sqlhosts file – ol_informix1410_2

▪ cat $INFORMIXSQLHOSTS
▪ dr_informix1410_2 drsoctcp cte2 dr_informix1410_2

▪ lo_informix1410_2 onsoctcp 127.0.0.1 lo_informix1410_2

▪ g_ol_informix1410_1 group - - i=1

▪ ol_informix1410_1 onsoctcp cte2 31374 g=g_ol_informix1410_1

▪ g_ol_informix1410_2 group - - i=2

▪ ol_informix1410_2 onsoctcp cte2 26311 g=g_ol_informix1410_2

▪ g_ol_informix1410_3 group - - i=3

▪ ol_informix1410_3 onsoctcp cte2 10756 g=g_ol_informix1410_3

© 2017 IBM Corporation69

Three Server Cluster sqlhosts file – ol_informix1410_3

▪ cat $INFORMIXSQLHOSTS
▪ dr_informix1410_3 drsoctcp cte2 dr_informix1410_3

▪ lo_informix1410_3 onsoctcp 127.0.0.1 lo_informix1410_3

▪ g_ol_informix1410_1 group - - i=1

▪ ol_informix1410_1 onsoctcp cte2 31374 g=g_ol_informix1410_1

▪ g_ol_informix1410_2 group - - i=2

▪ ol_informix1410_2 onsoctcp cte2 26311 g=g_ol_informix1410_2

▪ g_ol_informix1410_3 group - - i=3

▪ ol_informix1410_3 onsoctcp cte2 10756 g=g_ol_informix1410_3

© 2017 IBM Corporation70

/etc/services for 3 Server cluster

▪ ol_informix1410_2 26311/tcp

▪ dr_informix1410_2 20669/tcp

▪ lo_informix1410_2 29368/tcp

▪ ol_informix1410_3 10756/tcp

▪ dr_informix1410_3 15685/tcp

▪ lo_informix1410_3 31498/tcp

▪ ol_informix1410_1 31374/tcp

▪ dr_informix1410_1 6498/tcp

▪ lo_informix1410_1 17875/tcp

© 2017 IBM Corporation71

Questions

© 2021 IBM Corporation72

Sharding

© 2021 IBM Corporation

Dynamic Elasticity

▪ Rapid horizontal scalability
– Ability for the application to grow by adding low cost hardware to the solution

– Ability to add or delete nodes dynamically

– Ability rebalance the data dynamically

▪ Application transparent elasticity

© 2017 IBM Corporation74

Why Scale Out Instead of Up?

▪ Scaling Out
– Adding more servers with less processors and RAM

– Advantages

• Startup costs much less

• Can grow instep with the application

• Individual servers cost less

❑ Several less expensive server rather than fewer high cost servers

❑ Redundant servers cost more

• Greater chance of isolating catastrophic failures

• Dynamic – instance does not go down

▪ Scaling Up
– Adding more processors and RAM to a single server

– Advantages

• Less power consumption than running multiple servers

• Less infrastructure (network, licensing,..)

© 2017 IBM Corporation75

Difference between Sharding Data vs Replication

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Sharding Replication

Each node hold a

portion of the data

• Hash

• Expression

Same data on each

node

Inserted data is

placed on the correct

node

Data is copied to all

nodes

Actions are shipped

to applicable nodes

Work on local copy

and modification are

propagated

© 2017 IBM Corporation76

Mongo Sharding is not for Data Availability

▪ Sharding is for growth, not availability

▪ Redundancy of a node provides high availability for the data
– Both Mongo and Informix allow for multiple redundant nodes

– Mongo refers to this as Replica Sets and the additional nodes slaves

– Informix refers to this as MACH, and additional nodes secondary

▪ With Informix the secondary server can:
– Provide high availability

– Scale out
• Execute select

• Allow Insert/Update/Deletes on the secondary servers

• Share Disks with the master/primary node

© 2017 IBM Corporation77

Mongo Sharding is not for Data Availability

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

© 2017 IBM Corporation78

Basic Data Distribution/Replication Terms

Term Description Informix Term

Shard A single node or a group of nodes holding the same data

(replica set)

Instance

Replica Set A collection of nodes contain the same data MACH Cluster

Shard Key The field that dictates the distribution of the documents.

Must always exist in a document.

Shard Key

Sharded

Cluster

A group shards were each shard contains a portion of the

data.

Grid/Region

Slave A server which contains a second copy of the data for read

only processing.

Secondary Server

Remote Secondary

© 2017 IBM Corporation79

Mongo Sharding

|

mongo

© 2017 IBM Corporation80

Scaling Out Using Sharded Queries

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

1. Request data from local shard

Find sold cars for

all states

2. Automatically sends request to

other shards requesting data

3. Returns results to client

© 2017 IBM Corporation81

1. Insert row sent to your local shard

Scaling Out Using Sharded Inserts

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Row

state = “OR”

2. Automatically forward the data to

the proper shard

© 2017 IBM Corporation82

1. Delete condition sent to local shard

Scaling Out Using Sharded Delete

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Delete

state = “OR” AND

Dnum = “123123”

2. Local shard determine which

shard(s) to forward the operation

3. Execute the operation

© 2017 IBM Corporation83

1. Insert a row on your local shard

Scaling Out Using Sharded Update

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Row

state = “OR”

2. Automatically forward the data to

the proper shard

Row

state = “OR”

© 2017 IBM Corporation84

1. Send command to local node

Scaling Out Adding a Shard

Shard Key

state= “OR”

Shard Key

state= “WA”

Shard Key

state= “CA”

Command

Add Shard “NV”

2. New shard dynamically added,

data re-distributed (if required)

Shard Key

state= “NV”

© 2017 IBM Corporation85

Sharding with Hash

▪ Hash based sharding simplifies the

partitioning of data across the shards

▪ Pros
– No data layout planning is required

– Adding additional nodes is online and dynamic

▪ Cons
– Adding additional node requires data to be moved

– Electricity/hardware costs if taken to extremes

▪ Data automatically broken in pieces

© 2017 IBM Corporation86

Shard Key

HASH(gambler_ID)

Scaling Out with Hash Sharding - Insert

Shard Key

HASH(gambler_ID)

Row

Gambler_ID =“11”

Shard Key

HASH(gambler_ID)

1. Insert row sent to your local shard

2. Local shard determine which

shard(s) to forward the insert

3. Execute the operation

© 2017 IBM Corporation87

Shard Key

state= “CA”

Informix NoSQL Cluster Architecture Overview

Shard Key

state= “OR”

Shard Key

state= “WA”

two independent copies of the

data and two servers to

share the workload.

Read/Write activity

supported on all servers

three independent copies of the

data, but four servers to

share the workload (two

servers share the same

disk). Read/Write activity

supported on all servers

two independent copies of the

data, but three servers to

share the workload (two

servers share the same

disks). Read/Write activity

supported on all servers

© 2017 IBM Corporation88

MongoDB SHARDING details (roughly)

▪ Shard a single table by range or hashing.

▪ Mongos will direct the INSERT to target shard.

▪ Mongos tries to eliminate shards for update, delete, selects as well.

▪ FIND (SELECT) can happen ONLY a SINGLE table.

▪ Mongos works as coordinator for multi-node ops.

▪ Once a row is inserted to a shard, it remains there despite any key

update.

▪ No transactional support on multi-node updates.
– Each document update is unto its own.

© 2017 IBM Corporation89

Informix Sharding

App Server
Mongo Driver

Listener
JDBC

Enterprise replication + Flexible Grid

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

Location/1

Sales/1

Customer/1

Location/2

Sales/2

Customer/2

Location/3

Sales/3

Customer/3

Location/4

Sales/4

Customer/4

Location/5

Sales/5

Customer/5

Location/6

Sales/6

Customer/6

Informix/1 Informix/3 Informix/4 Informix/5 Informix/6Informix/2

© 2017 IBM Corporation90

Informix Sharding + High Availability

App Server
Mongo Driver

Listener
JDBC

Enterprise replication + Flexible Grid

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

App Server
Mongo Driver

Listener
JDBC

Informix/1
Primary

Informix/1
SDS/HDR

Informix/1
RSS

Informix/2
Primary

Informix/2
SDS/HDR

Informix/2
RSS

Informix/3
Primary

Informix/3
SDS/HDR

Informix/3
RSS

Informix/4
Primary

Informix/4
SDS/HDR

Informix/4
RSS

Informix/5
Primary

Informix/5
SDS/HDR

Informix/5
RSS

Informix/6
Primary

Informix/6
SDS/HDR

Informix/6
RSS

© 2017 IBM Corporation91

Sharding – Informix Implementation

▪ Shard a single table by range or hashing.

cdr define shard myshard mydb:usr1.mytab \

–type=delete –key=”bson_get(bsoncol, ‘STATE’)” –strategy=expression \

versionCol=version \

servA “in (‘TX’, ‘OK’)” \

servB “in (‘NY’,’NJ’) “ \

servC “in (‘AL’,’KS’) “ \

servD remainder

cdr define shard myshard mydb:usr1.mytab \

–type=delete –key=state –strategy=hash --versionCol=version \

servA servB servC servD

▪ MongoDB shard a single table by hashing.

– sh.shardCollection("records.active", { a: "hashed" })

© 2017 IBM Corporation92

Show Sharded Collections – All Collections

▪ user1@cte2:~> cdr list shardCollection

▪ Shard Collection:sh_stores_demo_city_info2 Version:0 type:hash key:bson_value_lvarchar(data, '_id')

▪ Version Column:modCount

▪ Table:stores_demo:ifxjson.city_info2

▪ g_ol_informix1210_1 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) = 0

▪ g_ol_informix1210_2 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (1, -1)

▪ g_ol_informix1210_3 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (2, -2)

▪ Shard Collection:sh_stores_demo_city_info Version:1 type:hash key:bson_value_lvarchar(data, '_id')

▪ Version Column:modCount

▪ Table:stores_demo:ifxjson.city_info

▪ g_ol_informix1210_1 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) = 0

▪ g_ol_informix1210_2 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (1, -1)

▪ g_ol_informix1210_3 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (2, -2)

▪ Shard Collection:sh_stores_demo_lowercase Version:0 type:hash key:bson_value_lvarchar(data, '_id')

▪ Version Column:modCount

▪ Table:stores_demo:ifxjson.lowercase

▪ g_ol_informix1210_1 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) = 0

▪ g_ol_informix1210_2 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (1, -1)

▪ g_ol_informix1210_3 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (2, -2)

© 2017 IBM Corporation93

Listing Sharded Collections – Single Collection

▪ user1@cte2:~> cdr list shardCollection stores_demo.city_info2

▪ Shard Collection:sh_stores_demo_city_info2 Version:0 type:hash key:bson_value_lvarchar(data, '_id')

▪ Version Column:modCount

▪ Table:stores_demo:ifxjson.city_info2

▪ g_ol_informix1210_1 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) = 0

▪ g_ol_informix1210_2 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (1, -1)

▪ g_ol_informix1210_3 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (2, -2)

▪ Shard Collection:sh_stores_demo_city_info Version:1 type:hash key:bson_value_lvarchar(data, '_id')

▪ Version Column:modCount

▪ Table:stores_demo:ifxjson.city_info

▪ g_ol_informix1210_1 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) = 0

▪ g_ol_informix1210_2 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (1, -1)

▪ g_ol_informix1210_3 mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in (2, -2)

© 2017 IBM Corporation94

onstat –g shard

▪ onstat -g shard

▪ Your evaluation license will expire on 2014-06-26 00:00:00

▪ IBM Informix Dynamic Server Version 12.10.FC3TL -- On-Line -- Up 4 days 07:05:02 -- 208516 Kbytes

▪ sh_stores_demo_city_info2 stores_demo:ifxjson.city_info2 key:bson_value_lvarchar(data, '_id')

HASH:DELETE SHARD OPTIMIZATION:ENABLED

▪ Matching for delete:modCount

▪ g_ol_informix1210_1 (65550) mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) = 0

▪ g_ol_informix1210_2 (65551) mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in

(1, -1)

▪ g_ol_informix1210_3 (65552) mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in

(2, -2)

▪ sh_stores_demo_city_info stores_demo:ifxjson.city_info key:bson_value_lvarchar(data, '_id')

HASH:DELETE SHARD OPTIMIZATION:ENABLED

▪ Matching for delete:modCount

▪ g_ol_informix1210_1 (65547) mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) = 0

▪ g_ol_informix1210_2 (65548) mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in

(1, -1)

▪ g_ol_informix1210_3 (65549) mod(ifx_checksum(bson_value_lvarchar(data, '_id')::LVARCHAR, 0), 3) in

(2, -2)

© 2017 IBM Corporation95

Sharding – Informix Implementation

▪ Shard a single table by range or hashing.

▪ Sharding is transparent to application.

▪ Each CRUD statement will only touch a single table.

– Limitation of MongoDB…Makes it easier for Informix.

– Lack of joins is a big limitation for SQL applications.

▪ Lacks transactional support for distributed update.

© 2017 IBM Corporation96

Informix Sharding
▪ Identical table is created on each node and meta data is replicated on

each node.

▪ Schema based replication is the foundation for our sharding.

▪ CRUD operations can go to any node.
– We’ll use replication and other techniques to reflect the data in the target node,

eventually.

– Replication is asynchronous in Informix presently.

– Informix also has synchronous replication with HDR … not used for sharding now.

© 2017 IBM Corporation97

SELECT on sharded tables
▪ The query can be submitted to any of the nodes via the listener.

▪ That node acts as the “coordinator” for the distributed query.

▪ It also does the node elimination based on the query predicate.

▪ After that, the query is transformed to UNION ALL query

SELECT SKIP ? bson_new(data, '{"_id":0.0 ,"num":1.0 ,"name" : 1.0}')::bson

FROM customers@rsys1:db

WHERE bson_extract(data, 'name') = “A” or bson_extract(data, 'name') = “X”

is transformed into:

SELECT SKIP ? bson_new(data, '{"_id":0.0 ,"num":1.0 ,"name" : 1.0}')::bson

FROM customers@rsys1:db

WHERE bson_extract(data, 'name') = “A” or bson_extract(data, 'name') = “X”

UNION ALL

SELECT SKIP ? bson_new(data, '{"_id":0.0 ,"num":1.0 ,"name" : 1.0}')::bson

FROM customers@rsys1:db

WHERE bson_extract(data, 'name') = “A” or bson_extract(data, 'name') = “X”
© 2017 IBM Corporation98

INSERT: Single node

▪ If necessary, automatically create database & table (collection) on the

application INSERT

▪ Collections: CREATE TABLE t(a GUID, d BSON);

▪ GUID column is needed to ensure unique row across the SHARD’s:

– Also used as a Primary Key (PK) in Enterprise Replication.

▪ Client application inserts JSON, client API converts this into BSON,

generates ‘_id’ (object id) if necessary & sends to server over

JDBC/ODBC.

▪ Server saves the data into this table as BSON, with an automatically

generated GUID

© 2017 IBM Corporation99

DELETE: Single node

▪ Mongo remove are translated to SQL DELETE

▪ Will always remove all the qualifying rows.

▪ WHERE clause translation is same as SELECT

© 2017 IBM Corporation100

UPDATE: Single node

▪ Simple set, increment, decrement updates are handled directly by the

server.

Mongo: db.w.update({x: {$gt:55}}, {$set:{z:9595}});

SQL: UPDATE w

SET data = bson_update(data, “{$set:{z:9595}}”)

WHERE bson_extract(data, 'x') > “{x:55}”::bson ?

▪ bson_update is a built-in expression updating a BSON document with

a given set of operations.

▪ Complex updates are handled via select batch, delete, insert.

▪ Informix always updates all the rows or no rows, under a transaction.

© 2017 IBM Corporation101

INSERT: shard implementation

▪ If the table is sharded:

– Insert the data into local table as usual.

– Replication threads in the background will evaluate the log record to see which

rows will have moved.

– Replication thread will move the necessary row to target and delete from the

local table.

– For each inserted row ending up in non-local shard, simply generate the logical

log and avoid insert into local table & indices.

© 2017 IBM Corporation102

DELETE : shard implementation

▪ Application delete could delete rows from any of the shards in the
table.

▪ DELETE will come in as shard_delete() procedure.

– execute procedure shard_delete(tabname, delete_stmt);

– This procedure will issue delete locally.

– It will then INSERT the delete statement into a “special” shard delete table
(single for all tables).

– Enterprise replication will propagate the delete to applicable target
systems.

© 2017 IBM Corporation103

UPDATE: shard implementation

▪ When the update have to be done on multiple nodes:

– Client application does UPDATE and CLIENT API converts that into three

operations:

• SELECT, DELETE & INSERT

• Inserts JSON, client API converts this into BSON & sends to server.

• ListenerFile needs to be configured properly for this:

• if sharding.enable=true in the listener file then you are required to set

update.client.strategy=deleteInsert.

▪ GUID column is needed to ensure unique row across the SHARD

© 2017 IBM Corporation104

Transactions (single node)

▪ Mongo does not have the notion of transactions.
– Each document update is atomic, but not the app statement

▪ For the first release of Informix-NoSQL
– By default, JDBC listener simply uses AUTO COMMIT option

– Each server operation INSERT, UPDATE, DELETE, SELECT will be

automatically be committed after each operation.

• No locks are held across multiple application operations.

© 2017 IBM Corporation105

Transactions (sharded environment)

▪ In sharded environment, mongo runs databases via two different

instances: mongos and mongod.
– Mongos simply redirects operations to the relevant mongod.

– No statement level transactional support.

▪ Informix
– Does not have the 2-layer architecture

– The server the application connected to becomes the transaction coordinator

– Now has 2-phase commit protocol transaction support

– SELECT statement goes thru distributed query infrastructure(ISTAR) as always

– INSERT, UPDATE, DELETE direct thru Enterprise Replication as always.

– Wire Listener must be configured for this, if the parameter

sharding.enable=true is set then you are required to set

update.client.strategy=deleteInsert.

© 2017 IBM Corporation106

Questions

© 2021 IBM Corporation107

MongoDB Utilities

© 2021 IBM Corporation

mongoexport

▪ A command-line utility that produces a JSON or CSV (comma

separated values) export of data stored in a MongoDB instance.
– “Do not use mongoimport and mongoexport for full-scale backups because

they may not reliably capture data type information.”

– “Use mongodump and mongorestore as described in MongoDB Backup

Methods for this kind of functionality.”

▪ By default, mongoexport will write one JSON document on output for

every MongoDB document in the collection.

▪ The other output format possibility presently is via CSV; you must

specify this separately with the “- - csv” option and use the “- -

fields” option, to specify the fields within the document to use.

▪ The MongoDB web site contains lots of page references for methods

to employ to get a complete export that fall short of complete.

© 2017 IBM Corporation109

http://docs.mongodb.org/manual/reference/program/mongoimport/#bin.mongoimport
http://docs.mongodb.org/manual/reference/program/mongodump/#bin.mongodump
http://docs.mongodb.org/manual/reference/program/mongorestore/#bin.mongorestore
http://docs.mongodb.org/manual/core/backups/

mongoexport

▪ Below is the command line to dump to a JSON file (default) for the

city_info collection:

▪ mongoexport requires a collection to be specified:

▪ What does the JSON output look like:

© 2017 IBM Corporation110

mongoexport

▪ CSV output:

▪ What does it look like:

▪ A comma actually being a piece of data could be a problem here…..

▪ Note: the “_id” field was not selected and does not appear here. This

is expected behavior.
– Exporting to a JSON file (default) makes it appear.

© 2017 IBM Corporation111

mongoimport – Migration tool ????

▪ mongoimport of a JSON file into a collection table, the collection

city_info3 did not exist within Informix, prior to the import of the

29470 records:

▪ During its operation, mongoimport reports the time every 4 seconds

or so on average, and how many records to the second have been

imported, and the average load time per second.

▪ To import 29470 objects took roughly 27 seconds inside of a

virtualized image on laptop.
© 2017 IBM Corporation112

mongoimport

▪ A file exported with mongoexport should be imported with

mongoimport.

▪ A collection table, if it does not exist in Informix or MongoDB, will be

created for you with name given with the “-c” option, at time of import.

▪ There are other options here as well
– Specifying whether the load file is -csv or -tsv oriented, and as a sub-

requirement for this option, the field names (-f option) to be used, comma

separated (with no spaces in between fields)

– Ability to drop an existing collection before import (--drop)

– To do Upserts (--upsert)

▪ update statistics works on collection tables and should be run

immediately and in the usual way.

© 2017 IBM Corporation113

mongodump – Single Collection Dump

▪ Utility to backup a database.

▪ Can backup
– Entire Database Collections

– Entire Single Collection

– Can accept a query to do a partial collection backup.

– Point in Time Collection Backup

– And other things as well.

▪ user1@cte2:~> mongodump --collection city_info2 --db stores_demo

▪ connected to: 127.0.0.1

▪ Wed Apr 2 15:29:35.062 DATABASE: stores_demo to

dump/stores_demo

▪ Wed Apr 2 15:29:35.082 stores_demo.city_info2 to

dump/stores_demo/city_info2.bson

▪ Wed Apr 2 15:29:35.953 29470 objects

▪ Wed Apr 2 15:29:35.954 Metadata for stores_demo.city_info2 to

dump/stores_demo/city_info2.metadata.json

▪ user1@cte2:~>
© 2017 IBM Corporation114

mongodump – Single Collection Dump (cont’d)

▪ Absent any other argument, mongo creates a subdirectory in the

your current directory called dump, and another subdirectory under

dump called database_name.

▪ The output here under database_name is in binary format and

unreadable, absent any argument to the contrary. The file(s)

contained here are by collection_name.

© 2017 IBM Corporation115

mongodump – Entire Database Dump

▪ user1@cte2:~> mongodump --db stores_demo
▪ connected to: 127.0.0.1

▪ Wed Apr 2 15:38:23.440 DATABASE: stores_demo to dump/stores_demo

▪ Wed Apr 2 15:38:23.472 stores_demo.city_info to dump/stores_demo/city_info.bson

▪ Wed Apr 2 15:38:23.957 10067 objects

▪ Wed Apr 2 15:38:23.958 Metadata for stores_demo.city_info to dump/stores_demo/city_info.metadata.json

▪ Wed Apr 2 15:38:23.958 stores_demo.city_info2 to dump/stores_demo/city_info2.bson

▪ Wed Apr 2 15:38:24.563 29470 objects

▪ Wed Apr 2 15:38:24.587 Metadata for stores_demo.city_info2 to dump/stores_demo/city_info2.metadata.json

▪ Wed Apr 2 15:38:24.587 stores_demo.deliveries1 to dump/stores_demo/deliveries1.bson

▪ Wed Apr 2 15:38:24.631 1 objects

▪ Wed Apr 2 15:38:24.631 Metadata for stores_demo.deliveries1 to dump/stores_demo/deliveries1.metadata.json

▪ Wed Apr 2 15:38:24.631 stores_demo.lowercase to dump/stores_demo/lowercase.bson

▪ Wed Apr 2 15:38:24.665 2 objects

▪ Wed Apr 2 15:38:24.665 Metadata for stores_demo.lowercase to dump/stores_demo/lowercase.metadata.json

▪ user1@cte2:~>

▪ All of the above objects are collections.

▪ mongodump can only backup collections, including sharded

collections. Since this is all it can do:
– It is unlikely that all user tables in a hybrid database would be collections

– The system catalogs will never be collections (see next slide).

– So don’t use this to backup Informix based databases.
© 2017 IBM Corporation116

mongodump – Entire Database Dump

▪ mongodump can presently only backup collections. Below are some

of the objects missed ….

▪ mongos> db.systables.find({ tabid: { $gte: 1 } }, { tabname: 1 })

▪ { "tabname" : "systables" }

▪ { "tabname" : "syscolumns" }

▪ { "tabname" : "sysindices" }

▪ { "tabname" : "systabauth" }

▪ { "tabname" : "syscolauth" }

▪ { "tabname" : "sysviews" }

▪ { "tabname" : "sysusers" }

▪ etc.

▪ So if you need a tool to work with your collections only, then this will

do the job.

© 2017 IBM Corporation117

Questions

© 2021 IBM Corporation118

Useful Informix Capabilities Over Collections

© 2021 IBM Corporation

Compression (1) (and repack and shrink too)

▪ Works as user Informix within the listener file on a collection:
▪ user1@cte2:~> su - informix

▪ Password:

▪ informix@cte2:~> source mongoDB_env.ksh

▪ informix@cte2:~> mongo

▪ MongoDB shell version: 2.4.5

▪ connecting to: test

▪ mongos> use stores_demo

▪ switched to db stores_demo

▪ mongos> db.getCollection("system.sql").findOne({ "$sql": "execute function

sysadmin@ol_informix1210_1:'informix'.task ('table compress repack

shrink','city_info2','stores_demo','ifxjson')" })

▪ {

▪ "(expression)" : "Succeeded: table compress repack shrink stores_demo:ifxjson.city_info2"

▪ }

▪ mongos>

▪ Listener file:
▪ informix@cte2:/opt/IBM/informix_12.10_1/etc> cat jsonListener.properties

▪ listener.port=27017

▪ url=jdbc:informix-

sqli://localhost:17875/sysmaster:INFORMIXSERVER=lo_informix1210_1;USER=informix;PASSWOR

D=informix

▪ security.sql.passthrough=true

▪ sharding.enable=true

▪ update.client.strategy=deleteInsert

© 2017 IBM Corporation121

Compression (2) (and repack and shrink too)

▪ informix@cte2:~> dbschema -d stores_demo -t city_info2 -ss

▪ Your evaluation license will expire on 2014-06-26 00:00:00

▪ DBSCHEMA Schema Utility INFORMIX-SQL Version 12.10.FC3TL

▪ { TABLE "ifxjson".city_info2 row size = 4240 number of columns = 4 index size = 164 }

▪ create collection "stores_demo.city_info2" table "ifxjson".city_info2

▪ (

▪ id char(128) not null ,

▪ data "informix".bson,

▪ modcount bigint,

▪ flags integer,

▪ primary key (id)

▪) in datadbs1 extent size 64 next size 64 compressed lock mode row;

© 2017 IBM Corporation122

estimate_compression

▪ Usual rules apply:

▪ mongos> db.getCollection("system.sql").findOne({ "$sql": "execute function

sysadmin@ol_informix1210_1:'informix'.task ('table

estimate_compression','city_info3','stores_demo','ifxjson')" })

▪ {

▪ "(expression)" : "est curr change partnum coloff table/index\n----- ----- ------ ---------- -

---- ---------------------------\n64.9% 0.0% +64.9 0x00900007 -1

stores_demo:ifxjson.city_info3\n\nSucceeded: table estimate_compression

stores_demo:ifxjson.city_info3"

▪ }

▪ mongos> db.getCollection("system.sql").findOne({ "$sql": "execute function

sysadmin@ol_informix1210_1:'informix'.task ('table

estimate_compression','city_info4','stores_demo','ifxjson')" })

▪ {

▪ "(expression)" : "est curr change partnum coloff table/index\n----- ----- ------ ---------- -

---- ---------------------------\nPartition 100236 does not contain enough rows to build a

compression dictionary.\nThe partition must contain at least 2000 rows to perform this

operation.\nFAILED: table estimate_compression stores_demo:user1.city_info4"

▪ }

© 2017 IBM Corporation123

defragment

▪ mongos> db.getCollection("system.sql").findOne({ "$sql": "execute function

sysadmin@ol_informix1210_1:'informix'.task

('defragment','stores_demo:informix.sysprocbody')" })

▪ { "(expression)" : "OK" }

▪ mongos> db.getCollection("system.sql").findOne({ "$sql": "execute function

sysadmin@ol_informix1210_1:'informix'.task

('defragment','stores_demo:informix.syscolumns')" })

▪ { "(expression)" : "OK" }

▪ select tabname[1,18], nrows, npused, npdata, nptotal, nextns

▪ from sysptprof, sysptnhdr

▪ where sysptprof.partnum = sysptnhdr.partnum

▪ and dbsname = "stores_demo"

▪ and tabname in ("sysprocbody","syscolumns")

▪ order by 6 desc

▪ Obviously, the output is after defragmentation.

▪ sysprocbody had 15 extents prior.

tabname syscolumns

nrows 844

npused 32

npdata 19

nptotal 32

nextns 1

tabname sysprocbody

nrows 12511

npused 2266

npdata 1833

nptotal 2304

nextns 1

© 2017 IBM Corporation124

Backups – ontape

▪ Output is below:
▪ informix@cte2:~> mongo

▪ MongoDB shell version: 2.4.5

▪ connecting to: test

▪ mongos> db.getCollection("system.sql").findOne({ "$sql": "execute function

sysadmin@ol_informix1210_1:'informix'.task ('ontape archive directory level 0','/backup/','512'

)" })

▪ {

▪ "(expression)" : "Your evaluation license will expire on 2014-06-26 00:00:00\n10 percent

done.\n100 percent done.\nFile created: /backup/cte2_215_L0\n\nPlease label this tape as

number 1 in the arc tape sequence. \nThis tape contains the following logical logs:\n\n

178\n\nProgram over."

▪ }

▪ mongos> exit

▪ bye

▪ informix@cte2:~> ls -l /backup

▪ total 122884

▪ -rw-rw---- 1 informix informix 125829120 Apr 10 09:07 cte2_215_L0

▪ informix@cte2:~>

▪ This operation took no more than 1 minute start to finish, a small

database. Yes…. The command output is a bit messy ……
© 2017 IBM Corporation125

Backups (cont’d)

▪ onbar and onpsm do not yet work thru the Mongo interface (or the

Informix SQL Admin API for that matter for restores); nor do onbar

and onpsm work through the supplied MongoDB “run()” command.

▪ onbar and onpsm work normally to backup collections and tables

and in the normal way.

▪ Make sure TAPEDEV, LTAPEDEV and BAR_BSALIB_PATH are set

▪ onpsm (minimally):
– onpsm -D add /opt/IBM/informix_12.10_1/backups/logs -g LOGPOOL -p

HIGHEST -t FILE

– onpsm -D add /opt/IBM/informix_12.10_1/backups/spaces -g DBSPOOL -p

HIGHEST -t FILE

– Substitute, if you like a more suitable directory storage capacity wise above.

$INFORMIXDIR is likely not the best place for this.

▪ onbar –b –L0

© 2017 IBM Corporation126

onbar Backups (partial results, obviously)

© 2017 IBM Corporation127

onbar Cold Restores – bar_act.log (in part, obviously) onbar

▪ onbar –r (as command line informix) …….
(skipped a large amount of successful output)

.

.
2014-04-16 10:27:38 4968 4966 Begin restore logical log 199 (Storage Manager copy ID: 0 53).

2014-04-16 10:27:47 4968 4966 Completed restore logical log 199.

2014-04-16 10:27:47 4968 4966 Begin restore logical log 200 (Storage Manager copy ID: 0 58).

2014-04-16 10:27:47 4968 4966 Completed restore logical log 200.

2014-04-16 10:27:47 4968 4966 Begin restore logical log 201 (Storage Manager copy ID: 0 59).

2014-04-16 10:27:47 4968 4966 Completed restore logical log 201.

2014-04-16 10:27:59 4968 4966 Completed logical restore.

2014-04-16 10:27:59 4968 4966 Informix PSM session 77 closed

2014-04-16 10:28:02 4968 4966 /opt/IBM/informix_12.10_1/bin/onbar_d complete, returning 0 (0x00)

▪ Testing afterward showed intact chunks (onstat –d), good schemas

(dbschema –d stores_demo –t city_info3 –ss) and error free output from both

the standard informix and mongo environments.

▪ ontape had similar successful restore results.

▪ In both cases, ER came up as well. Automatically on reboot.

© 2017 IBM Corporation128

Questions

© 2021 IBM Corporation129

Some MongoDB & JSON stuff you can do while

connected to Informix

© 2021 IBM Corporation

JSON & MongoDB (1)

▪ informix@cte2:~> mongo stores_demo --eval "printjson(db.getCollectionNames())"

▪ MongoDB shell version: 2.4.5

▪ connecting to: stores_demo

▪ [

▪ "city_info",

▪ "city_info2",

▪ "city_info3",

▪ "city_info4",

▪ "deliveries1",

▪ "lowercase"

▪]

▪ informix@cte2:~> mongo stores_demo --eval "print(db.getCollectionNames())"

▪ MongoDB shell version: 2.4.5

▪ connecting to: stores_demo

▪ city_info,city_info2,city_info3,city_info4,deliveries1,lowercase

▪ informix@cte2:~> mongo cte2:27017

▪ MongoDB shell version: 2.4.5

▪ connecting to: cte2:27017/test

▪ mongos>

© 2017 IBM Corporation131

JSON & MongoDB (2)

▪ informix@cte2:~> mongo cte2:27017/stores_demo

▪ MongoDB shell version: 2.4.5

▪ connecting to: cte2:27017/stores_demo

▪ mongos>

© 2017 IBM Corporation132

Questions

© 2021 IBM Corporation133

Informix NoSQL Aggregation Framework

© 2021 IBM Corporation

Description

▪ Informix support for Mongo’s Aggregation Pipeline
– Allow users to run aggregation queries on BSON documents

– Enables users to do more than just retrieve back the same documents they

inserted. Now they can run queries to aggregate and summarize groups of

documents in a collection.

© 2017 IBM Corporation135

Mongo’s Aggregation Pipeline

http://docs.mongodb.org/manual/core/aggregation-pipeline/

“The aggregation pipeline is a framework for data aggregation modeled on the

concept of data processing pipelines. Documents enter a multi-stage

pipeline that transforms the documents into an aggregated results.”

© 2017 IBM Corporation136

http://docs.mongodb.org/manual/core/aggregation-pipeline/

Informix NoSQL Aggregation Queries

MongoDB Client

db.collection.aggregate([

{$match:{…}},{$group:{…}},

{$sort:{…}])

SELECT … FROM collection

WHERE … GROUP BY … ORDER BY …

Informix JSON listener

Informix Database Server

Informix JDBC driver

BSON

BSON

The JSON listener will

handle pipelining by

nesting various

derived table queries

inside of each other.

© 2017 IBM Corporation137

Aggregation Pipeline Operations

$match WHERE clause.

Uses standard Mongo query operators that are already supported in xC2.

$group GROUP BY clause.

See next slide for group (aggregation) operators.

$unwind New Informix function bson_unwind was created.

Takes an array of documents and returns them as a stream of documents

$project Projection clause

Support specifying which fields of the documents to include in the projection. Mongo also

has a set of projection operators to add new computed fields, as well as rename or

rearrange fields in your documents.

$limit LIMIT keyword in projection clause.

$skip SKIP keyword in projection clause.

$sort ORDER BY clause.

Mongo also has a $geoNear pipeline operator, which is not supported at this time.

© 2017 IBM Corporation138

Group aggregation operators

$sum Use bson_value_double to extract value and SUM

$avg Use bson_value_double to extract value and compute average

$max Use bson_extract and then apply MAX function directly on BSON

$min Use bson_extract and then apply MIN function directly on BSON

$addToSet New Informix addToSet function that returns an array of all the unique values for the

selected field among for each document in that group.

$push New Informix push function that returns an array of all values for the selected field among

for each document in that group.

Mongo also has $first and $last group operators, which are not supported at this time.

© 2017 IBM Corporation139

bson_unwind

 Scan Iterator

Unwind Iterator

...| BSON |...

Other iterators..

...| BSON |...

Unwind support
functions

Evaluate projection columns

Select _id, bson_unwind(data, “$tags”) from tab1;

Dummy
bson_unwind()

Update bson column with unwind result
(for each array element)

© 2017 IBM Corporation140

bson_unwind()

▪ One bson_unwind() per query block

▪ Unwind one array per query block

▪ Support Skip M / First N on unwind iterator

▪ bson_unwind() is allowed only on column references (e.g

bson_unwind(bson_concat(...), “$tag”) not allowed)

▪ Materialize a Derived Table with bson_unwind()

▪ PDQ is disabled

© 2017 IBM Corporation141

Use Cases

$group and $sum example: Return 3 states with the largest population

© 2017 IBM Corporation142

Use Cases

$unwind example:

• Each article has an

array of languages

that it is available in.

• Aggregation query

returns the number of

articles available for

each language

© 2017 IBM Corporation143

Use Cases

$addToSet example:

• Return an array of all

students in each grade

level

© 2017 IBM Corporation144

Enhanced JSON Compatibility

▪ Create and store Timeseries data:
– With the REST API or the MongoDB API

▪ Access BSON data from JDBC client applications

▪ Quickly export relational tables to BSON or JSON documents
– Allows for moving data between environments / architectures

145 © 2017 IBM Corporation

Text Search of JSON Documents (NoSQL)

▪ Use the Basic Text Search (BTS) database extension to:
– Perform basic text search on columns that have JSON or BSON data types

– Create the BTS index on JSON or BSON data types through SQL with the

CREATE INDEX statement or on BSON data types through the Informix

extension to MongoDB with the createTextIndex command

– Control how JSON and BSON columns are indexed by including JSON index

parameters when you create the basic text search index.

– Run a basic text query on JSON or BSON data with the bts_contains() search

predicate in SQL queries or the $ifxtext query operator in JSON queries.

© 2017 IBM Corporation146

Include JSON documents in timeseries

▪ Schema flexibility for Timeseries applications
– Add key value pairs as data elements

– Create a time series that contains JSON documents

– JSON documents are unstructured data

– No schema changes required, if the structure of the data changes

▪ Easy to load and query the data

▪ Provides performance benefit over classic timeseries implementation

▪ Allows for multiple timeseries for each device

147 © 2017 IBM Corporation

Include JSON documents in timeseries (contd)

▪ Use MongoDB and REST API clients
– Can load JSON documents directly from MongoDB and REST API clients

without formatting the data.

▪ Application compatibility
– No need for schema migration, therefore minimal changes required for the

application.

▪ Variable schema
– Storing data as unstructured data in JSON documents prevents the need to

update your schema or your application.

– For example, if you have sensors that monitor every machine in a factory, when

you add a machine, the new sensors might collect different types of data than

existing sensors. Greater flexibility.

▪ Simplified schema
– If schema for time-based data includes more columns than each record

typically uses, or if data records typically contain many NULL values, storing it

as unstructured JSON documents makes perfect sense.

– For example, if there are 50 different measurements but each sensor collects

only 5 of those measurements, each record will have 45 NULL values.

© 2017 IBM Corporation148

Questions

© 2021 IBM Corporation149

MongoDB Application Source Drivers & Informix

© 2021 IBM Corporation

MongoDB Drivers – The Power of Hybrid

▪ One of the big secrets here is what the MongoDB company, formerly

known as 10Gen, does not have to do.

▪ Lots of user community support for the product and its drivers.

▪ With the new MongoDB client interface to Informix as a hybrid data

store, there are a series of MongoDB officially supported drivers

formally listed as the MongoDB “ecosystem” and linked to on the

website for MongoDB.

▪ These have support from MongoDB directly as a corporation and also

broad support from the MongoDB user community

▪ And now, those users can be part of the Informix “ecosystem” as well.

▪ A whole new universe:
– to go, where Informix has not gone before.

© 2017 IBM Corporation151

Client Applications
▪ New Wire Protocol Listener supports

existing MongoDB drivers

▪ Connect to MongoDB or Informix with

same application!

MongoDB

native Client

MongoDB

web browser

Mobile

Applications

MongoDB

Wire

Protocol

Informix

14.1

MongoDB

driver

MongoDB

© 2017 IBM Corporation152

MongoDB Drivers – Officially Supported (1)

▪ With the new MongoDB client interface, with Informix as a hybrid

data store, there comes a whole new world of drivers necessary

for programmers to access and interface Informix, thru mongo:

▪ C
– C Driver Library

▪ C++
– C++ Driver Library

– Download and Compile C++

Driver

– Getting Started with the C++

Driver

– SQL to mongo Shell to C++

– C++ BSON Helper Functions

– C++ BSON Array Examples

▪ C#
– CSharp Language Center

– CSharp Community Projects

– Getting Started with the CSharp

Driver

– CSharp Driver LINQ Tutorial

– Serialize Documents with the

CSharp Driver

– CSharp Driver Tutorial

▪ Erlang

– Erlang Language Center

© 2017 IBM Corporation153

http://docs.mongodb.org/ecosystem/drivers/c/
http://docs.mongodb.org/ecosystem/drivers/cpp/
http://docs.mongodb.org/ecosystem/tutorial/download-and-compile-cpp-driver/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-cpp-driver/
http://docs.mongodb.org/ecosystem/drivers/cpp-to-sql-to-mongo-shell/
http://docs.mongodb.org/ecosystem/drivers/cpp-bson-helper-functions/
http://docs.mongodb.org/ecosystem/drivers/cpp-bson-array-examples/
http://docs.mongodb.org/ecosystem/drivers/csharp/
http://docs.mongodb.org/ecosystem/drivers/csharp-community-projects/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-linq-queries-with-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/serialize-documents-with-the-csharp-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-csharp-driver/
http://docs.mongodb.org/ecosystem/drivers/erlang/

MongoDB Drivers – Officially Supported (2)

▪ Java
– Java Language Center

– Java Types

– Java Driver Concurrency

– Java Driver Replica Set

Semantics

– Getting Started with Java Driver

– Java Driver and Aggregation

Framework

– Java DBObject to Perform

Saves

▪ JavaScript
– JavaScript Language Center

▪ Node.js
– Node.js Language Center

▪ Perl
– Perl Language Center

– Contribute to the Perl Driver

▪ PHP
– PHP Language Center

– PHP Libraries, Frameworks and

Tools

▪ Python
– Python Language Center

– Write a Tumblelog Application

with Flask and MongoEngine

▪ Ruby
– Ruby Language Center

– Ruby External Resources

– MongoDB Data Modeling and

Rails

– Getting Started with Rails

– Getting Started with Rails 3

▪ Scala
– Scala Language Center

© 2017 IBM Corporation154

http://docs.mongodb.org/ecosystem/drivers/java/
http://docs.mongodb.org/ecosystem/drivers/java-types/
http://docs.mongodb.org/ecosystem/drivers/java-concurrency/
http://docs.mongodb.org/ecosystem/drivers/java-replica-set-semantics/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-java-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-aggregation-framework-with-java-driver/
http://docs.mongodb.org/ecosystem/tutorial/use-java-dbobject-to-perform-saves/
http://docs.mongodb.org/ecosystem/drivers/javascript/
http://docs.mongodb.org/ecosystem/drivers/node-js/
http://docs.mongodb.org/ecosystem/drivers/perl/
http://docs.mongodb.org/ecosystem/drivers/perl-internals/
http://docs.mongodb.org/ecosystem/drivers/php/
http://docs.mongodb.org/ecosystem/drivers/php-libraries/
http://docs.mongodb.org/ecosystem/drivers/python/
http://docs.mongodb.org/ecosystem/tutorial/write-a-tumblelog-application-with-flask-mongoengine/
http://docs.mongodb.org/ecosystem/drivers/ruby/
http://docs.mongodb.org/ecosystem/drivers/ruby-resources/
http://docs.mongodb.org/ecosystem/tutorial/model-data-for-ruby-on-rails/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-ruby-on-rails/
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-ruby-on-rails-3/
http://docs.mongodb.org/ecosystem/drivers/scala/

MongoDB Drivers – Community Supported (1)

▪ There is a large and vast MongoDB user community for the support

and maintenance of various drivers used in interfacing MongoDB not

officially supported by MongoDB.

▪ They are programmers or dba’s controlling a database in many cases

and are interested in getting solutions to complex programming and

database technical issues.

▪ The community experiments with these new technologies, as such

represent a new frontier for Informix:
– Supporting the drivers used/created thru the standard modern day Internet

forums, chat rooms, code repositories, etc.

– These ecosystems outside of the MongoDB official environment are testament

to the large user community following it has developed.

– In part, its why they presently have 25% market share in the document store

aspect of the database marketplace.

– The drivers are numerous ……… worth looking at briefly.

– Perhaps one of your customers is using one of these …….

© 2017 IBM Corporation155

MongoDB Drivers – Community Supported (2)

▪ ActionScript3
– http://code.google.com/p/jmcnet-full-

mongo-flex-driver/

▪ C
– libmongo-client

▪ ColdFusion
– https://github.com/marcesher/cfmon

godb/

▪ D
– Port of the MongoDB C Driver for D

– Dart

▪ Delphi
– mongo-delphi-driver

– pebongo

– TMongoWire

– Alcinoe TALMongoClient

– Synopse mORMot framework

▪ Djongo
– https://github.com/nesdis/djongo

▪ Elixir
– Elixir Driver

– Elixir Driver Alternate

– Ecto adapter

▪ Entity
– Entity driver for mongodb on Google

Code, included within the standard

Entity Library

▪ Erlang
– Erlang Driver

▪ Factor
– Factor

▪ Fantom
– afMongo

– afMorphia

– FantoMongo

▪ F#
– F#

▪ Go
– mgo (GlobalSign fork)

© 2017 IBM Corporation
156

http://code.google.com/p/jmcnet-full-mongo-flex-driver/C
http://github.com/algernon/libmongo-client
https://github.com/marcesher/cfmongodb/
http://github.com/itiu/mongo-d-driver
http://pub.dartlang.org/packages/mongo_dart
https://github.com/gerald-lindsly/mongo-delphi-driver
http://code.google.com/p/pebongo/
http://github.com/stijnsanders/TMongoWire
https://github.com/Zeus64/alcinoe/
http://blog.synopse.info/post/2014/05/07/MongoDB-database-access
https://github.com/nesdis/djongo
https://github.com/ericmj/mongodb
https://github.com/zookzook/elixir-mongodb-driver
https://github.com/michalmuskala/mongodb_ecto
http://code.google.com/p/entity-language/wiki/mongodb
https://github.com/comtihon/mongodb-erlang
http://github.com/slavapestov/factor/tree/master/extra/mongodb/
http://pods.fantomfactory.org/pods/afMongo
http://pods.fantomfactory.org/pods/afMorphia
http://bitbucket.org/liamstask/fantomongo/wiki/Home
http://gist.github.com/218388
https://github.com/globalsign/mgo

MongoDB Drivers – Community Supported (3)

▪ Mathematica
– MongoDBLink

▪ MatLab
– mongo-matlab-driver

▪ Objective C
– NuMongoDB

– ObjCMongoDB

▪ OCaml
– Mongo.ml

▪ Opa
– Opa Standard Library

MongoDB Driver

▪ PHP
– Asynchronous PHP driver

using libevent|

▪ Groovy
– gmongo

– Grails Bates:
• Grails business audit trails plugin

▪ Haskell
– MongoDB driver for Haskell

▪ Javascript
– Narwhal

▪ Kotlin
– KMongo

▪ LabVIEW
– mongo-labview-driver

▪ Lisp
– https://github.com/fons/cl-mongo

▪ Lua
– LuaMongo on Google Code

– LuaMongo fork on Github

© 2017 IBM Corporation157

https://github.com/zbjornson/MongoDBLink
https://github.com/gerald-lindsly/mongo-matlab-driver
http://github.com/timburks/NuMongoDB
https://github.com/paulmelnikow/ObjCMongoDB
http://massd.github.io/mongo
https://github.com/MLstate/opalang/wiki/Hello%2C-database
https://github.com/kakserpom/phpdaemon
https://github.com/poiati/gmongo
https://github.com/saleram1/grails-bates
https://github.com/saleram1/grails-bates
https://github.com/mongodb-haskell/mongodb
http://github.com/sergi/narwhal-mongodb
https://github.com/Litote/kmongo
https://github.com/RBXSystems/mongo-labview-driver
https://github.com/fons/cl-mongo
http://code.google.com/p/luamongo/
https://github.com/moai/luamongo

MongoDB Drivers – Community Supported (4)

▪ PowerShell
– mosh Powershell provider for

MongoDB

– mdbc module cmdlets using the

officially supported .NET driver

▪ Prolongo

▪ Python
– MongoEngine

– MongoKit

– Django-nonrel

– Django-mongodb

– Django-mongonaut

▪ R
– rmongodb

▪ Racket (PLT Scheme)
– mongodb.plt

▪ Scala
– Reactive-Mongo

▪ Smalltalk
– Squeaksource MongoTalk

▪ Swift
– Mongokitten

© 2017 IBM Corporation158

http://mosh.codeplex.com/
https://github.com/nightroman/Mdbc
https://github.com/khueue/prolongo
http://mongoengine.org/
http://namlook.github.com/mongokit/
https://github.com/django-nonrel/django-nonrel
http://django-mongodb.org/
https://github.com/pydanny/django-mongonaut
https://cran.r-project.org/web/packages/mongolite/
http://planet.racket-lang.org/display.ss?package=mongodb.plt&owner=jaymccarthy&changerep=2
http://reactivemongo.org/
http://www.squeaksource.com/MongoTalk.html
https://github.com/OpenKitten/MongoKitten

Nothing Like the Present …….

▪ In addition to connectivity thru the wire listener, we are offering

meaningful enhancements to Informix for JSON capabilities:
– Native JSON and BSON data storage types

• With functions necessary to manipulate the data as well, in and out.

– Hybrid Applications
• Execute SQL within JSON apps

• Execute JSON within SQL based apps.

– Hybrid database
• Store Relational and non-relational data within the same database

• Join both data organization types within SQL

– Standard MongoDB application performance scaling techniques via sharding
• We do it too, and have for years.

• We call it Enterprise Replication, and now we store on a node (shard) by key value

and load balance the storage across the shards as does MongoDB for scalability.

– Use standard Informix utilities and techniques on both.
• Backup/restore

• Enterprise Replication

• Compression

• Time Series,

• Etc.

© 2017 IBM Corporation159

What Data Store Format to Use?

▪ Consider NoSQL JSON when
– Application and schema subject to frequent changes

– Prototyping, early stages of application development

– De-normalized data has advantages
• Entity/document is in the form you want to save

❑ Read efficiency – return in one fetch without sorting, grouping, or ORM mapping

– "Systems of Engagement"
• Less stringent "CAP" requirements in favor of speed

❑ Eventual consistency is good enough

• Social media

▪ Relational still best suited when these are critical
– Data normalization to

• Eliminate redundancy

• Ensure master data consistency

– Database enforced constraints

– Database-server JOINs on secondary indexes

© 2017 IBM Corporation161

Data Normalization - Choose the Right Solution

NoSQL JSON - Two approaches

Embedded (de-normalized)

Using references

{dept: "A10",

deptname:"Shipping",

manager:"Samuel",

emp:[

{empno:"000999",

lastname:"Harrison",

edlevel:"16"},

{empno:"370001",

lastname:"Davis",

edlevel:"12"}

]

proj:[

{projno:"397",

projname:"Site Renovation",

respemp:"370001" },

{projno:"397",

projname:"Site Renovation",

respemp:"370001"} …

]

}

If you need normalization and database-enforced constraints, JSON may not be best choice

{_id

dept

…

)

{_id

emp

dept ref

…

}

{_id

dept

emp ref

…

)

Requires

application-

side join

Chance for

data

redundancy

create table department (

dept char(3),

deptname varchar(40),

manager varchar(20),

empno integer,

projno integer);

create table employee(

empno integer

lastname varchar(20)

edlevel smallint);

create table project(

projno integer,

projname varchar(20),

respemp integer);

Unique indexes on department.dept, employee.empno, project.projno

Composite index on department (dept, empno, projno)

Constraints (minimally) :

Between department.empno and employee.empno,

Between department .projno and project.projno

▪ Possibility exists of mistyped data with the NoSQL

schema.

▪ Application joins a must

▪ No mismatched data types on Informix.

▪ No Application Joins.

© 2017 IBM Corporation162

Using Schema-less Model In a Traditional Environment

▪ During prototyping, early development, validation
– As system stabilizes, stable schema parts could be moved to

relational columns

▪ For cases where web message or document will be retrieved as-is
– Yet retrieval on internal fields is needed

▪ When parts of the schema will always be dynamic

© 2017 IBM Corporation163

JSON and Informix – Complementary Technologies

▪ Does NoSQL mean NoDBA? No Informix?
– Definitely not - the relational database isn’t going away anytime soon

– IBM sees JSON as becoming a complementary technology to relational

▪ Transactional atomicity is essential for mission critical

business transactions
– Informix JSON solution brings commits, transaction scope

▪ Informix was the first DBMS to store relational and non-relational

datatypes side by side 19+ years ago and allow hybrid apps.
– Acquisition of Illustra

▪ Choice for developers.

© 2017 IBM Corporation164

JSON and Informix – The Hybrid Apps/DB Solution
▪ What do we offer a customer/developer – Think Hybrid:

– Hybrid database and applications, SQL & NoSQL

– Single/multi-instance, single/multi-database machines

– Multi, single statement and partial transactions, two-phase commit

– Encryption at Rest and on the wires, Backups Encrypted, Compression

– Free backup/restore utilities and storage manager to disk, tape or remote

– Heterogeneous Table/Whole Instance Replication, Rolling Upgrades, Sharding

– Free Connection Managers to all server types

– Scale up/out secondary servers, Shared Disk

– Master/Slave or Master/Master Replication

– User Defined, Geospatial, Spatial Data Types

– Time Series, Basic Text Search Data Types

– Native JSON/BSON, MQTT, REST support

– Configurable Dynamic Database Server Autonomics, Graphical Administration

– Free Informix Developer/Innovator-C Edition

– Hosted on Multiple Clouds and BYOL to Cloud

– In-memory Informix Warehouse Accelerator

– Legendary Up-Time ‘5 9’s’, Stable, Easy “stand-up” time measured in years

▪ All of this on one or possibly two physical machines (if replicating),

one user database in one instance, one electricity bill, one cost© 2017 IBM Corporation165

Informix vs Oracle Competitive

▪ Informix has lower TCO:
– Oracle is notorious for giving the product away for free for a year and then more

than making up for it in immediate years ahead.
• Lots of dbas needed in Oracle as well.

❑ One Informix customer has 44,000+ instances and 5 dbas

❑ Doubtful Oracle can run 44,000+ Oracle instances with 5 dbas

• Large S & S bills and hard to get away due to serious database conversion issues

▪ Vendor LOCK: Oracle locks in their users, once converted, for life by

converting their in house apps to Oracle Apps if applicable
– There are no known methods of converting the Oracle database and Oracle

Apps once both are in place at a customer site:
• Presently Oracle Cloud is in its infancy, and growing, and so it is giving that away too

• Informix on Cloud is growing too, we don’t lock in our users for life, we don’t have App

Suites

▪ Web apps based on NoSQL DB’s are the growing segment
– Oracle sells a separate product for these NoSQL apps, and logically separate

hardware is needed as well

– With Informix you can do it all in server and not incur those extra electricity and

other operating costs with a minimum number of dbas.
© 2017 IBM Corporation166

Informix vs SQL Server Competitive

▪ SQL Server just announced a Linux release that came out in late 2017
– Informix had multiple Linux releases for 10 years

– If SQL Server is so good on Windows why Linux now?

▪ It basically only runs on Windows
– Has a reputation for not being able to handle large scale Enterprise workloads

– Good for small to lower mid size workloads

– Which is why it costs less at small to mid-size

▪ No good virtualization licensing model, buy in 2’s
• Minimum purchase of 4 core physical and virtualized

▪ Client based encryption of everything (disk, network, memory,

backups) – leads to overheated clients
– Informix encrypts at rest disk storage and also backups and restores (storage

and logical log backups) thru configuration and there is an option to do partial

storage encryption.

– Network communications encryption from server to server and client to server

are serviced thru a wide variety of methodologies and ciphers
© 2017 IBM Corporation167

JSON and Informix – User Experience Quotes

▪ “This is just the beginning of the possibilities for this hybrid development

structure. I believe this structure will be more common in the future of app

creation than simply choosing only SQL or only NoSQL. The more tools are

given to developers, the more creative they can be and more choices they

have for tackling their problems. That is what developers want, reliable and

varied tools to solve their problems. Informix is working hard to provide that

with the JSON Listener. This technology will help drive the next generation

of web based applications in an industry where time is precious, rapid

prototyping is preferred and scalability is key. With NoSQL capabilities

infused to IDS, Informix is off to a great start.” –

▪ Hector Avala – Software Developer and College Student

© 2017 IBM Corporation168

Links, Helpful Information and Resources

▪ Informix CTP wiki

▪ Informix Developer Edition free download:
– https://www.ibm.com/account/reg/us-en/signup?formid=urx-32091Informix

Virtual Appliance

– Requires login

▪ Informix Innovator-C Edition free download:
– https://mrs-ux.mrs-prod-7d4bdc08e7ddc90fa89b373d95c240eb-0000.us-

south.containers.appdomain.cloud/marketing/iwm/platform/mrs/assets/package

List?source=ifxdl&lang=en_US

– Requires login

▪ MongoDB site

▪ MongoDB download: http://www.mongodb.org/downloads

▪ MongoDB drivers

▪ Informix NoSQL Compatibility Guide

© 2017 IBM Corporation169

https://w3-connections.ibm.com/wikis/home?lang=en_US#/wiki/Info%20Mgmt%20Client%20Technical%20Professional%20Resources%20Wiki/page/Information%20Management/Informix
http://www-01.ibm.com/software/data/informix
https://www.ibm.com/account/reg/us-en/signup?formid=urx-32091
http://www.mongodb.org/
http://www.mongodb.org/
http://www.mongodb.org/downloads
https://docs.mongodb.com/drivers/
https://www.ibm.com/docs/en/informix-servers/12.10?topic=compatibility-informix-json

Questions

© 2021 IBM Corporation170

REST and Informix

© 2017 IBM Corporation

REST Definition

172 © 2017 IBM Corporation

▪ Distributed communication architecture

▪ Widely popular in cloud environments

▪ REST
– An architectural style for web based communication

– Permits clients to communicate with servers in a unique manner

– Represents resources (databases in this case) as URI’s

– Architecture uses HTTP protocol

– A set of operations (GET/POST/PUT/DELETE) permit manipulation of

resources

▪ RESTful architectures are stateless
– Server does not maintain any client context between transactions

– Transaction must contain all information necessary to satisfy the particular

request.

– Makes RESTful architectures more reliable and also helps to expand their

scalability.

REST Architecture

The strength of REST
REST is an architectural style, not a protocol or an implementation. REST has some core principles, but

in the end, it's an abstraction, not a specific implementation.

(Source: http://www.ibm.com/developerworks/library/os-understand-rest-ruby/)

173 © 2017 IBM Corporation

Access Informix from REST API Clients

▪ Directly connect applications or devices that communicate through

the REST API to Informix
– No client side drivers needed, freedom from client dependency

– Web based applications can connect seamlessly to the database using HTTP

protocol

– Create connections by configuring the wire listener for the REST API

– Use MongoDB and SQL queries against JSON and BSON document

collections, traditional relational tables, and time series data

– The REST API uses MongoDB syntax and returns JSON documents

– Widely popular in Cloud / IOT architectures

– Simplify web application development in Cloud environments

▪ A subset of the HTTP protocol (GET / POST / DELETE / PUT)

supported
– POST method maps to mongo db insert or create command

– GET method maps to mongo db query command

– PUT method maps to mongo db update command

– DELETE method maps to mongo db delete command

© 2017 IBM Corporation174

Access Informix from REST API Clients (contd)

175 © 2017 IBM Corporation

Wire Listener & REST (1)

▪ The wire listener is a mid-tier gateway server that enables

communication between MongoDB applications and the Informix®

database server.

▪ The wire listener is provided as an executable JAR file that is named

$INFORMIXDIR/bin/jsonListener.jar. The JAR file provides access to

the MongoDB API and REST API.

▪ You can connect to a JSON collection by using the REST API.

▪ When a client is connected to the wire listener by using the REST API,

each database is registered; session events such as create or drop a

database.

▪ If a REST request refers to a database that exists but is not registered,

the database is registered and a redirect to the root of the database is

returned.

© 2017 IBM Corporation176

Wire Listener & REST (2)

▪ The JSONListener.properties file has an optional parameter called

listener.type It specifies the type of wire listener to start:

– The default is mongo which connects the wire listener to the MongoDB API

• listener.type=mongo

▪ To connect to a REST API, connect to the wire listener, connect the wire

listener to the REST API using the following parameter value which

must be specified to use the REST API:
– listener.type=rest

▪ There are some new REST related optional parameters for the

JSONListener.properties file which may be necessary for use.

© 2017 IBM Corporation177

Multiple wire listeners configuration (1)

▪ Run multiple wire listeners at the same time to access both Mongo

and REST data, by creating a properties file for each:
– Create each properties file in the $INFORMIXDIR/etc directory using the

$INFORMIXDIR/etc/jsonListener-example.properties file as a template.

– Customize each properties file and assign a unique name:
• The url parameter must be specified, either in each individual properties file or in

the file that is referenced by the include parameter.
❑ Optional: Specify the include parameter to reference another properties file.

❑ The properties file path can be relative or absolute.

• If you have multiple properties files, you can avoid duplicating parameter settings in

the multiple properties files by specifying a subset of shared parameters in a single

properties file, and the unique parameters in the individual properties files.

– Start the wire listeners.

© 2017 IBM Corporation178

Multiple wire listeners configuration (2) - Example

▪ The same url, authentication.enable, and security.sql.passthrough

parameters are used to run two separate wire listeners:

▪ Create a properties file named shared.properties that includes the

following parameters
– :url=jdbc:informix-sqli://localhost:9090/sysmaster:

INFORMIXSERVER=lo_informix1210; authentication.enable=true

security.sql.passthrough=true

▪ Create a properties file for use with the MongoDB API that is named

mongo.properties, with the parameter setting

include=shared.properties included:
– include=shared.properties listener.type=mongo listener.port=27017

▪ Create a properties file for use with the REST API that is named

rest.properties, with the parameter setting include=shared.properties

included:
– include=shared.properties listener.type=rest listener.port=8080

© 2017 IBM Corporation179

Multiple wire listeners configuration (3) - Example

▪ Start the wire listeners by using the command line:
– java -jar jsonListener.jar -start -config json.properties -config

rest.properties

© 2017 IBM Corporation180

HTTP: POST

Method Path Description

POST / Create a database

POST /databaseName Create a collection
databaseName – database name

POST /databasename/collectionName Create a document
databaseName – database name
collectionName – collection name

181 © 2017 IBM Corporation

HTTP: POST – Create a database

▪ With the locale specified.

▪ Request: Specify the POST method:
– POST / Data:

▪ Specify database name mydb and an English UTF-8 locale:
– {name:"mydb",locale:"en_us.utf8"}

▪ Response: The following response indicates that the operation was

successful:
– Response does not contain any data.

182 © 2017 IBM Corporation

HTTP: POST – Collection Creation

▪ Creates a collection in the mydb database.

▪ Request: Specify the POST method and the database name as mydb:
– POST /mydb

▪ Data: Specify the collection name as bar:
– {name:“bar”}

▪ Response: The following response indicates that the operation was

successful:
– {"msg":"created collection mydb.bar","ok":true}

© 2017 IBM Corporation183

HTTP: POST – Relational Table Creation

▪ This example creates a relational table in an existing database.

▪ Request: Specify the POST method and stores_mydb as the database:
– POST /stores_mydb

▪ Data: Specify the table attributes:
– { name: "rel", columns: [{name:"id",type:"int",primaryKey:true,},

{name:"name",type:"varchar(255)"}, {name:"age",type:"int",notNull:false}]}

▪ Response: The following response indicates that the operation was

successful:
– {msg: "created collection stores_mydb.rel" ok: true}

© 2015 IBM Corporation184

HTTP: POST – Insert a Single Document

▪ Inserts a document into an existing collection.

▪ Request: Specify the POST method, mydb database, and people

collection:
– POST /mydb/people

▪ Data: Specify John Doe age 31:
– {firstName:"John",lastName:"Doe",age:31}

▪ Response: Because the _id field was not included in the document,

the automatically generated _id is included in the response. Here is a

successful response:
– {"id":{"$oid":"537cf433559aeb93c9ab66cd"},"ok":true}

185 © 2017 IBM Corporation

HTTP: POST – Insert Multiple Documents

▪ This example inserts multiple documents into a collection.

▪ Request: Specify the POST method, mydb database, and people

collection:
– POST /mydb/people

▪ Data: Specify John Doe age 31 and Jane Doe age 31:
– [{firstName:"John",lastName:"Doe",age:31},

{firstName:"Jane",lastName:"Doe",age:31}]

▪ Response: Here is a successful response:
– {ok: true}

© 2015 IBM Corporation186

HTTP: GET

▪ The GET method maps to the MongoDB query command.

Method Path Description

GET / List all databases

GET /databaseName List all collections in a database
databaseName – database name

GET /databasename/collectionName?
queryParameters

Query a collection
databaseName – database name
collectionName – collection name
queryParameters - The query
parameters.
The supported Informix
queryParameters are:
batchSize, query, fields, and sort.

These map to the equivalent
MongoDB batchSize, query, fields,
and sort parameters.

© 2017 IBM Corporation187

HTTP: GET – List All Databases on the Server

▪ Specify the GET method and forward slash (/):
– GET /

▪ Data: None.

▪ Response: Here is a successful response:
– ["mydb" , "test“]

© 2017 IBM Corporation188

HTTP: GET – List All Collections in a Database

▪ Request: Specify the GET method and mydb database:
– GET /mydb

▪ Data: None.

▪ Response: Here is a successful response:
– ["bar"]

© 2017 IBM Corporation189

HTTP: GET – Show Sorted Data from a Collection

▪ This example sorts the query results in ascending order by age.

▪ Request: Specify the GET method, mydb database, people collection,

and query with the sort parameter.
– The sort parameter specifies ascending order (age:1), and filters id (_id:0) and

last name (lastName:0) from the response

– GET /mydb/people?sort={age:1}&fields={_id:0,lastName:0}

▪ Data: None.

▪ Response: The first names are displayed in ascending order with the

_id and lastName filtered from the response:
– [{"firstName":"Sherry","age":31}, {"firstName":"John","age":31},

{"firstName":"Bob","age":47}, {"firstName":"Larry","age":49}]

190 © 2017 IBM Corporation

HTTP: PUT

▪ The PUT method maps to the MongoDB update command.

Method Path Description

PUT /databasename/collectionName
?queryParameters

Update a document
databaseName – database name
collectionName – collection name
queryParameters - The supported
Informix queryParameters are
query, upsert, and multiupdate.

These map to the equivalent
MongoDB query, insert, and multi
query parameters, respectively.-

191 © 2017 IBM Corporation

HTTP: PUT – Document Update in a Collection

▪ Update the value for Larry in an existing collection, from age 49 to 25:
– [{"_id":{"$oid":"536d20f1559a60e677d7ed1b"},"firstName":"Larry"

,"lastName":"Doe","age":49},{"_id":{"$oid":"536d20f1559a60e677d7ed1c"}

,"firstName":"Bob","lastName":"Doe","age":47}]

▪ Request: Specify the PUT method and query the name Larry:
– PUT /?query={name:"Larry"}

▪ Data: Specify the MongoDB $set operator with age 25:
– {"$set":{age:25}}

▪ Response: Here is a successful response:
– {"n":1,"ok":true}

192 © 2017 IBM Corporation

HTTP: DELETE

▪ The DELETE method maps to the MongoDB delete command.

Method Path Description

DELETE / Delete all databases

DELETE /databaseName Delete a database
databaseName – database name

DELETE /databasename/collectionName Delete a collection
databaseName – database name
collectionName – collection name

DELETE /databasename/collectionName
?queryParameter

Delete a document
databaseName – database name
collectionName – collection name
queryParameter - The query
parameter.
The supported Informix
queryParameter is query.
This maps to the equivalent
MongoDB query parameter.

193 © 2017 IBM Corporation

HTTP: DELETE (1) – Database Deletion

▪ Delete a database called mydb.

▪ Request: Specify the DELETE method and the mydb database:
– DELETE /mydb

▪ Data: None.

▪ Response: Here is a successful response:
– {msg: "dropped database"ns: "mydb"ok: true}

© 2017 IBM Corporation194

HTTP: DELETE (2) – Collection deletion

▪ This example deletes a collection from a database.

▪ Request: Specify the DELETE method, mydb database, and bar

collection:
– DELETE /mydb/bar

▪ Data: None.

▪ Response: Here is a successful response:
– {"msg":"dropped collection""ns":"mydb.bar""ok":true}

195 © 2017 IBM Corporation

Some Selected JSON Improvements

© 2021 IBM Corporation

Agenda – JSON

▪ Manipulate JSON & BSON data via SQL

▪ High Availability for MongoDB and REST clients

▪ Wire Listener configuration enhancements

▪ Wire Listener query support

▪ Enhanced user account management through the wire listener

© 2017 IBM Corporation197

High Availability for MongoDB and REST clients

▪ To provide high availability to client applications:
– REST clients use a reverse proxy for multiple wire listeners.

– MongoDB clients use a HA cluster configuration for Informix database servers.

▪ Each database server in the cluster has a directly connected wire

listener on the same computer as the database server that the wire

listener is connected to and all wire listeners run on port 27017.
– http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-

replica-set/

▪ To provide high availability between the wire listener and the Informix

database server, use one of the following methods:
– Route the connection via the Connection Manager between the wire listener

and the database server.
• Known methods

– Configure the url parameter in the wire listener configuration file to use one of

the Informix JDBC Driver methods of connecting to a high-availability cluster,

via a dynamic reading of the sqlhosts file.
• Has been enhanced in 12.10.xC5

© 2017 IBM Corporation198

http://en.wikipedia.org/wiki/Reverse_proxy
http://docs.mongodb.org/meta-driver/latest/legacy/connect-driver-to-replica-set/

Wire Listener Configuration File Enhancements

▪ The wire listener configuration file can be any name, and there can

be many of them created in a HA cluster, as long as each file is

created in $INFORMIXDIR/etc and has a required .properties file

name suffix.
– Use $INFORMIXDIR/etc/jsonListener-example.properties as a template.

•Copy it first; DON’T edit it directly.

▪ To include parameters in the wire listener, you must uncomment the

row and customize parameters with the default values in the copy of

the original template file.

▪ The url parameter is required. All other parameters are optional.
– Review the defaults for the following parameters and verify that they are

appropriate for your environment:
•authentication.enable

•listener.type

•listener.port

•listener.hostName

© 2017 IBM Corporation199

Wire Listener Configuration File – url Parameter

▪ Specifies the host name, database server, user ID, and password that

are used in connections to the database server.

▪ You must specify the sysmaster database in the url parameter; the

wire listener uses sysmaster for administrative purposes.

▪ >>-url=--jdbc:informix-sqli://hostname:portnum--/sysmaster:-----> >--

+---------------------------------+------------------------->< '-USER=userid;--

PASSWORD=password-'

▪ You can now include additional JDBC properties, each semi-colon ‘;’

separated with a semi-colon in the url parameter such as:
– INFORMIXCONTIME

– INFORMIXCONRETRY

– LOGINTIMEOUT

– IFX_SOC_TIMEOUT

© 2017 IBM Corporation200

listener.hostName Wire Listener Parameter

▪ Specifies the host name of the wire listener. The host name determines

the network adapter or interface that the wire listener binds the server

socket to.

▪ To enable the wire listener to be accessed by clients on remote hosts,

turn on authentication by using the authentication.enable parameter.

▪ .--localhost--.

▪ >>-listener.hostName=--+-hostname--+---------------------------><

▪ '-*----------------'

▪ localhost
– Bind the wire listener to the localhost address. The wire listener is not

accessible from clients on remote machines. Default value.

▪ hostname
– The host name or IP address of host machine where the wire listener binds to.

▪ *
– The wire listener can bind to all interfaces or addresses.

© 2017 IBM Corporation201

collection.informix.options Wire Listener Parameter (1)

▪ Specifies table options for shadow columns or auditing to use when

creating a JSON collection.

▪ .-,-----------------.

▪ V |

▪ >>-collection.informix.options=[-----+-------------+----+---]-----><

▪ +-"audit"--------+

▪ +-"crcols"------+

▪ +-"erkey"-------+

▪ +-"replcheck"-+

▪ '-"vercols"-----'

© 2017 IBM Corporation202

collection.informix.options Wire Listener Parameter (2)

▪ audit
– Uses the CREATE TABLE statement AUDIT option to create a table to be

included in the set of tables that are audited at the row level if selective row-

level is enabled.

▪ crcols
– Uses the CREATE TABLE statement CRCOLS option to create the two

shadow columns that Enterprise Replication uses for conflict resolution.

▪ erkey
– Uses the CREATE TABLE statement ERKEY option to create the ERKEY

shadow columns that Enterprise Replication uses for a replication key.

▪ replcheck
– Uses the CREATE TABLE statement REPLCHECK option to create the

ifx_replcheck shadow column that Enterprise Replication uses for consistency

checking.

▪ vercols
– Uses the CREATE TABLE statement VERCOLS option to create two shadow

columns that Informix uses to support update operations on secondary servers.

© 2017 IBM Corporation203

command.listDatabases.sizeStrategy (1)

▪ Wire listener parameter specifying a strategy to calculate the size of

your database when the MongoDB listDatabases command is run.

▪ The listDatabases command estimates the size of all collections and

collection indexes for each database:
– Relational tables and indexes are excluded from this size calculation.

▪ Performs expensive and CPU-intensive computations on the size of

each database in the database server instance.
– You can decrease the expense by using the

command.listDatabases.sizeStrategy parameter.

▪ .---estimate--------------.

▪ >>-command.listDatabases.sizeStrategy=---+-{estimate:n}----------+---><

▪ +-compute--------------+

▪ +-none--------------------+

▪ '-perDatabaseSpace-'

© 2017 IBM Corporation204

command.listDatabases.sizeStrategy (2)

▪ estimate
– Estimate the database size by sampling documents in every collection; this is

the default value.

– This strategy is the equivalent of {estimate: 1000}, which takes a sample size of

0.1% of the documents in every collection; this is the default value.

▪ command.listDatabases.sizeStrategy=estimate

▪ estimate: n
– Estimate the database size by sampling one document for every n documents

in every collection. The following example estimates the collection size by using

sample size of 0.5% or 1/200th of the documents:

▪ command.listDatabases.sizeStrategy={estimate:200}

© 2017 IBM Corporation205

command.listDatabases.sizeStrategy (3)

▪ compute
– Compute the exact size of the database.

▪ command.listDatabases.sizeStrategy=compute

▪ none
– List the databases but do not compute the size.

– The database size is listed as 0.

▪ command.listDatabases.sizeStrategy=none

▪ perDatabaseSpace
– Calculates the size of a tenant database created by multi-tenancy feature by

adding the sizes for all dbspaces, sbspaces, and blobspaces that are assigned

to the tenant database.

© 2017 IBM Corporation206

fragment.count Wire Listener Parameter

▪ Specifies the number of fragments to use when creating a collection.
– 0

•The database server determines the number of collection fragments to create. Default.

– fragment_num > 0,
•Number of collection fragments created at collection creation.

▪ .-0---------------------.

▪ >>-fragment.count=--+-fragment_num-+---------------------------><

© 2017 IBM Corporation207

jdbc.afterNewConnectionCreation

▪ Wire listener parameter specifies one or more SQL commands to run

after a new connection to the database is created.

▪ .-,-----------------------.

▪ V |

▪ >>-jdbc.afterNewConnectionCreation=[---"sql_command"-+-]-------><

▪ For example, to accelerate queries run through the wire listener by

using the Informix Warehouse Accelerator:

▪ jdbc.afterNewConnectionCreation=["SET ENVIRONMENT USE_DWA

'ACCELERATE ON'"]

© 2017 IBM Corporation208

authentication.enable Wire Listener Parameter (1)

▪ Specifies whether to enable user authentication.

▪ Authentication of MongoDB clients occurs in the wire listener, not in

the database server.
‒Privileges are enforced by the wire listener.

▪ All communications that are sent to the database server originate

from the user that is specified in the url parameter, regardless of

which user was authenticated.

▪ User information and privileges are stored in the system_users

collection in each database.

▪ MongoDB authentication is done on a per database level, whereas

Informix authenticates to the instance.

© 2017 IBM Corporation209

authentication.enable Wire Listener Parameter (2)

▪ .-false-.

▪ >>-authentication.enable=--+-true--+---------------------------><

▪ false
– Do not authenticate users.

– This is the default value.

▪ True
– Authenticate users.

– Use the authentication.localhost.bypass.enable parameter to control the

type of authentication.

© 2017 IBM Corporation210

Wire Listener Logging – Default Logback Mechanism (1)

▪ The wire listener can output trace, debug, informational messages,

warnings, and error information to a log.

▪ Logback is pre-configured and installed along with the JSON

components.

▪ If you start the wire listener from the command line, you can specify

the amount of detail, name, and location of your log file by using the -

loglevel and -logfile command-line arguments.
– If you have customized the Logback configuration or specified another logging

framework, the settings for -loglevel and -logfile are ignored.

© 2017 IBM Corporation211

Wire Listener Logging – Default Logback Mechanism (2)

▪ If the wire listener is started automatically after you create a server

instance or if you run the task() or admin() function with the start

json listener argument, errors are sent to a log file:
– UNIX:

•The log file is in $INFORMIXDIR/jsonListener.log.

– Windows:
•The log file is named servername_jsonListener.log and is in your home directory.

•C:\Users\ifxjson\ol_informix1210_5_jsonListener.log.

© 2017 IBM Corporation212

Enhanced Account Management Via the Wire Listener

▪ Control user authorization to Informix databases through the wire

listener by locking and unlocking user accounts or individual

databases via the new Informix JSON lockAccount and

unlockAccounts commands.

© 2017 IBM Corporation213

JSON – lockAccounts – Lock a Database/User Account

▪ If you specify the lockAccounts:1 command without specifying a db

or user argument, all accounts in all databases are locked.

▪ Run this command as instance administrator.

▪ Syntax:
▪ >>-lockAccounts:----1,-+---+----------><

▪ +-db:-+-"database_name"---+-“---+

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]--+ |

▪ | +-{"$regex":"json_document"}-----------------------------------+ |

▪ | | .-,---| | |

▪ | | V | | |

▪ | '-{---+-"include":-+-"database_name"----------------+-+-+-}-' |

▪ | | | .-,--------------------------. | | |

▪ | | | V | | | |

▪ | | +-[---"database_name"-+-]---------+ | |

▪ | | '-{"$regex":"json_document"}---‘ | |

▪ | '-"exclude":-+-"database_name"----------------+--' |

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]----+ |

▪ | '- {"$regex":"json_document"}-' |

▪ '-user:-+-"user_name"------+--'

▪ '-"json_document"-'

© 2017 IBM Corporation214

JSON – lockAccounts – Lock a Database/User Account

▪ lockAccounts:1
– Required parameter locks a database or user account.

▪ db
– Optional parameter specifies the database name of an account to lock.

– For example, to lock all accounts in database that is named foo:

– db.runCommand({lockAccounts:1,db:"foo"})

▪ exclude
– Optional parameter specifies the databases to exclude.

– For example, to lock all accounts on the system except those in the databases

named alpha and beta:

– db.runCommand({lockAccounts:1,db:{"exclude":["alpha","beta"]})

© 2017 IBM Corporation215

JSON – lockAccounts – Lock a Database/User Account

▪ include
– Optional parameter specifies the databases to include.

– To lock all accounts in the databases named delta and gamma:

– db.runCommand({lockAccounts:1,db:{"include":["delta","gamma"]})

▪ $regex
– Optional evaluation query operator selects values from a specified JSON

document.

– To lock accounts for databases that begin with the character a. and end in e:

▪ db.runCommand({lockAccounts:1,db:{"$regex":"a.*e"})

▪ user
– Optional parameter specifies the user accounts to lock.

– For example, to lock the account of all users that are not named alice:

– db.runCommand({lockAccounts:1,user:{$ne:"alice"}});

© 2017 IBM Corporation216

JSON – unlockAccounts – Unlock a Database/User

Account

▪ If you specify the unlockAccounts:1 without specifying a db or user

argument, all accounts in all databases are unlocked.

▪ Run this command as instance administrator.

▪ >>-unlockAccounts:------1,-+---+-----><

▪ +-db:-+-"database_name"--+-"-+

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]-------------------------------------+ |

▪ | +-{"$regex":"json_document"}------------------------------+ |

▪ | | .-,---. | |

▪ | | V | | |

▪ | '-{---+-"include":-+-"database_name"------------+-+-+-}-' |

▪ | | | .-,---------------------------. | | |

▪ | | | V | | | |

▪ | | +-[---"database_name"-+-]----- -+ | |

▪ | | '-{"$regex":"json_document"}----' | |

▪ | '-"exclude":-+-"database_name"-----------+-' |

▪ | | .-,--------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]---+ |

▪ | '-{"$regex":"json_document"}-' |

▪ '-user:-+-"user_name"-----+--'

▪ '-"json_document"-'

© 2017 IBM Corporation217

JSON – unlockAccounts – Unlock a Database/User

Account
▪ unlockaccounts:1

– Required parameter unlocks a database or user account.

▪ db
– Optional parameter specifies the database name of an account to unlock.

– To unlock all accounts in database that is named foo:

– db.runCommand({unlockAccounts:1,db:"foo"})

▪ exclude
– Optional parameter specifies the databases to exclude.

– To unlock all accounts on the system except those in the databases named

alpha and beta:

– db.runCommand({unlockAccounts:1,db:{"exclude":["alpha","beta"]})

© 2017 IBM Corporation218

JSON – unlockAccounts – Unlock a Database/User

Account
▪ include

– Optional parameter specifies the databases to include.

– To unlock all accounts in the databases named delta and gamma:

– db.runCommand({unlockAccounts:1,db:{"include":["delta","gamma"]})

▪ $regex
– Optional evaluation query operator selects values from a specified JSON

document.

– To unlock accounts for databases that begin with the character a. and end in e:

– db.runCommand({unlockAccounts:1,db:{"$regex":"a.*e"})

▪ user
– This optional parameter specifies the user accounts to unlock.

– For example, to unlock the account of all users that are not named alice:

– db.runCommand({unlockAccounts:1,user:{$ne:"alice"}});

© 2017 IBM Corporation219

Manipulation of JSON & BSON Data Types with SQL

▪ JSON and BSON data types, allowed in local and distributed queries,

are Informix built-in data types accessible and manipulatible with

SQL statements.

▪ By calling BSON value functions within SQL statements it is possible

to retrieve specific key values from JSON or BSON data columns.

▪ It is possible to define indexes on key values within a JSON or BSON

column.

© 2017 IBM Corporation220

High Availability for MongoDB and REST Clients

▪ MongoDB and REST clients can be provided High Availability

functionality via running a wire listener on each server in an Informix

high-availability cluster.

▪ Provide high availability between the wire listener and the Informix

database server:
– Connect the wire listener to the database server through the Connection

Manager

– Specify an sqlhosts file via the url parameter in the wire listener properties file.

© 2017 IBM Corporation221

Wire Listener Configuration Enhancements

▪ These new or updated parameters can be set in the wire listener

properties file:
– url parameter can include JDBC environment variables.

– listener.hostName parameter can specify the listener host name to control the

network adapter or interface to which the wire listener connects.

– collection.informix.options parameter specifies table options to automatically

add shadow columns or enable auditing during JSON collection creation.

– command.listDatabases.sizeStrategy parameter can specify a strategy for

computing the database size when listDatabases is executed.

– fragment.count parameter can specify the number of fragments to create for a

collection.

– jdbc.afterNewConnectionCreation parameter can specify SQL statements,

such as SET ENVIRONMENT, to run after connecting to the database server.

© 2017 IBM Corporation222

Wire Listener Query Support

▪ The wire listener now supports these types of queries:
– Join queries on;

• JSON data

• Relational data or

• Both JSON and relational data.

– Array queries on JSON data with the $elemMatch query operator:
• Ratings, for example, must be an arrayed column in the inventory collection.

•db.inventory.find({ ratings: { $elemMatch: { $gt: 25, $lt: 90 } } })

– $first and $last group operators

© 2017 IBM Corporation223

Wire Listener Query Support (1)

▪ Join query support is an important part of the hybrid SQL/NoSQL

value proposition of Informix.

▪ The JSON listener now supports the following running joins by

querying against a new pseudo system.join table:
– Collection-to-collection

– Relational-to-relational

– Collection-to-relational

▪ Join queries are done by running a “find” query against the new

pseudo system table called system.join.

▪ For, example, in the Mongo shell, you’d run a query like this:

▪ > db.system.join.find({ join query document })

© 2017 IBM Corporation224

Wire Listener Query Support (2)

▪ Join Query Document:

▪ { $collections :

▪ {

▪ “tabName1” : { join_table_specification },

▪ “tabName2” : { join_table_specification },

▪ …

▪ },

▪ “$condition” : { join_condition_specification }

▪ }

▪ Required:
– $collections and $condition fields to run a find query against system.join.

– The $collections field must map to a document that includes two or more

collections or relational tables to be joined.

– The $condition specifies how to join the collections/tables. No other query

operators are supported in the top level of the join query document. (over)

© 2017 IBM Corporation225

Wire Listener Query Support (3)

▪ The join_table_specification for each collection/table must include the

required $project field; can have an optional $where query document:

– {“$project” : { … }, “$where”: { … }}

•The $project field follows the same projection syntax as regular Mongo queries.

•The optional $where field and uses the same query syntax as regular Mongo queries.

▪ The join_condition_specification is a document of key-value pairs that

define how all of the tables specified are joined together. These

conditions can be specified in two ways:
– A key-string value pair to map a single table’s column to another table’s column:

– “tabName1.column1”: “tabName2.column2”

– As a key-array pair to map a table’s column to multiple other table columns.

– “tabName1.column1”:

– [“tabName2.column2”, “tabName3.column3”, ….]
© 2017 IBM Corporation226

Wire Listener Query Support – Implementation Details

▪ Join queries work:
– With the sort, limit, skip, and explain options that can be set on a Mongo

cursor

– With listener cursoring

▪ Collection-to-Collection joins:
– The listener will look up if there are matching typed BSON indexes on the join

fields for each collection.
•If so, it will use that bson_value_* function in the join condition to take advantage of

the index.

– If the join was on customer.customer_num and orders.customers_num and

there were bson_value_int indexes on both customer.customer_num and

orders.customer_num, then the listener SQL join condition would be:
•bson_value_int(customer.data, “customer_num”) =

•bson_value_int(orders.data, “customer_num”)

© 2017 IBM Corporation227

Wire Listener Query Support – Implementation Details

– If there are no matching indexes using the same bson_value_* function, then

the listener defaults to the bson_get function for the join condition:
•bson_get(customer.data, “customer_num”) =

•bson_get(orders.data, “customer_num”)

▪ Collection-to-Relational joins:
– For collection-to-relational joins, the data type of the relational column

determines the bson_value_* function that is used:
•If joining a collection field to a character relational column, the

bson_value_lvarchar function is used.

•If joining a collection field to a numeric relational column, the bson_value_double

function is used, etc.

▪ Relational-to-Relational joins:
– No type conversions in the SQL query itself are necessary.

– The SQL condition is as expected:
•tab1.col1 = tab2.col2

© 2017 IBM Corporation228

Wire Listener Query Support Examples (1)

▪ For all these examples, the tables can be collections, relational

tables, or a combination of both; the syntax is the same.

▪ Example 1: Get the customers orders that totaled more than $100.

Join the customers and orders collections/tables on the

customer_num field/column where the order total > 100.

▪ { “$collections” :

▪ {

▪ “customers” :

▪ { “$project”: { customer_num: 1, name: 1, phone: 1 } },

▪ “orders” :

▪ { “$project”: { order_num: 1, nitems: 1, total: 1, _id: 0 },

▪ “$where” : { total : { “$gt”: 100 } } }

▪ },

▪ “$condition” :

▪ { “customers.customer_num” : “orders.customer_num” }

▪ }

© 2017 IBM Corporation229

Wire Listener Query Support Examples (2)

▪ Get the IBM locations in California and Oregon.

▪ Join the companies, sites, and zipcodes collections/tables where

company name is “IBM” and state is “CA” or “OR”.

▪ { $collections :

▪ {

▪ “companies” :

▪ { “$project”: { name: 1, _id: 0 }

▪ “$where” : { “name” : “IBM” } },

▪ “sites” :

▪ { “$project”: { site_name: 1, size: 1, zipcode: 1, _id:0 } },

▪ “zipcodes” :

▪ { “$project”: { state: 1, city: 1, _id:0 }

▪ “$where” : { “state”: { “$in”, [“CA”, “OR”] } } }

▪ },

▪ “$condition” :

▪ { “companies._id” : “sites.company_id”,

▪ “sites.zipcode” : “zipcodes.zipcode” }

▪ }
© 2017 IBM Corporation230

Wire Listener Query Support Examples (3)

▪ Use array syntax in the condition.

▪ Get the order info, shipment info, and payment info for order number

1093.

▪ { $collections :

▪ {

▪ “orders” :

▪ { “$project”: { order_num: 1, nitems: 1, total: 1, _id: 0 },

▪ “$where” : { order_num : 1093 } },

▪ “shipments” :

▪ { “$project”: { shipment_date: 1, arrival_date: 1 } },

▪ “payments” :

▪ { “$project”: { payment_method: 1, payment_date: 1 } }

▪ },

▪ “$condition” :

▪ { “orders.order_num” :

▪ [“shipments.order_num”, “payments.order_num”] }

© 2017 IBM Corporation231

BSON_UPDATE Enhancements

▪ The BSON_UPDATE SQL function allows SQL users to update the

contents of a BSON column within a JSON or BSON document with

one or more MongoDB update operators.

▪ Prior to 12.10.xC7, the BSON_UPDATE function allowed for the

following Mongo_DB update operators to be used:
– $set

– $inc

– $unset

▪ Now, the following are additionally allowed from the database server:

MongoDB array update operators MongoDB array update operator modifiers

$addToSet $each

$pop $position

$pullAll $slice

$push $sort
© 2017 IBM Corporation232

BSON_UPDATE Usage

▪ BSON_UPDATE is a function to update a BSON document with the

supported MongoDB API update operators.

▪ Update operations are run sequentially:
– 1) The original document is updated

– 2) The updated document is then the input to the next update operator.

– 3) The BSON_UPDATE function returns the final BSON document.
• Which then needs to be converted to JSON if to be human read

▪ To include JavaScript expressions in update operations, evaluate the

expressions on the client side and supply the final result of the

expression in a field-value pair.

© 2017 IBM Corporation233

Some Notes

▪ The MongoDB array update operators $pull, $pushAll work within

wire listener based operations and use a different strategy to perform

document updates that do not involve the BSON_UPDATE command

or the database server; JSON operations that do not use the

database server.

▪ It would appear the MongoDB API update operator ‘$’ is not

supported currently, as you receive the following error message:
– “9659: The server does not support the specified UPDATE operation on JSON

documents.”

© 2017 IBM Corporation234

Wire Listener Processing Change

▪ The wire listener now sends document updates to the database

server first by default.

▪ Previously, the wire listener processed document updates by default.

The default setting of the update.mode parameter in the wire listener

configuration file is now mixed instead of client.
– The wire listener falls back to the client in mixed mode when the database

server cannot process the updates.

© 2017 IBM Corporation235

Quickly Add or Remove Shard Servers With

Consistent Hashing
▪ Quickly add or remove a shard server by using the new consistent

hashing distribution strategy to shard data.

▪ With consistent hash-based sharding, the data is automatically

distributed between shard servers in a way that minimizes the data

movement when you add or remove shard servers.

▪ The original hashing algorithm redistributes all the data when you add

or remove a shard server.

▪ You can specify the consistent hashing strategy when you run the cdr

define shardCollection command.

© 2017 IBM Corporation236

Consistent Hash-based Sharding

▪ When a consistent hash-based sharding definition is created,

Informix uses a hash value of a specific defined column or field to

distribute data to servers of a shard cluster in a consistent pattern.

▪ If a shard server is added or removed, the consistent hashing

algorithm redistributes a fraction of the data.

▪ Specify how many hashing partitions to create on each shard server:
– The default is 3.

▪ If more than the default number of hashing partitions are created, the

more evenly the data is distributed among shard servers.
– If more than 10 hashing partitions are specified, the resulting SQL statement to

create the sharded table might fail because it exceeds the SQL statement

maximum character limit.

© 2017 IBM Corporation237

cdr define shardCollection (1)

▪ Below is a sharding definition that is named collection_1. Rows that

are inserted on any of the shard servers are distributed, based on a

consistent hash algorithm, to the appropriate shard server.

▪ The b column in the customers table that is owned by user john is the

shard key. Each shard server has three hashing partitions.

– cdr define shardCollection collection_1 db_1:john.customers --type=delete

--key=b --strategy=chash --partitions=3 --versionCol=column_3

g_shard_server_1 g_shard_server_2 g_shard_server_3

▪ ER verifies a replicated row or document was not updated before the

row or document can be deleted on the source server.

▪ Each shard server has a partition range calculated on the server group

name and data distributed according to the following sharding

definition which is very data dependent: (over)

© 2017 IBM Corporation238

Consistent Hashing Index Example

▪ To create three partitions on each shard server:
– cdr define shardCollection collection_1 db_1:informix.customers --

type=delete --key=b --strategy=chash --partitions=3 --

versionCol=column_3 g_shard_server_1 g_shard_server_2

g_shard_server_3

▪ Change dynamically the number of hashing partitions per shard

server by running the cdr change shardCollection command.
– cdr change shardCollection collection1 - –partitions=4

© 2017 IBM Corporation239

cdr define shardCollection (2)

▪ g_shard_server_1 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 4019 and 5469) or

▪ (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5719 and 6123) or

▪ (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2113 and 2652)

▪ g_shard_server_2 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 6124 and 7415) or

▪ (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 5470 and 5718) or

▪ (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 7416 and 7873)

▪ g_shard_server_3 (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 2653 and 3950) or

▪ mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) >= 7874 or

▪ mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) < 2113 or

▪ (mod(abs(ifx_checksum(b::LVARCHAR, 0)), 10000) between 3951 and 40

© 2017 IBM Corporation240

MongoDB 3.2,3.4,3.6,3.8,4.0,4.2 API Support

▪ C Driver Compatibility
– MongoDB C Driver

▪ C++ Driver Compatibility
– C++ version 11 0.3.0 &

▪ C#/.Net Driver Compatibility
– Versions 2.12 & 2.11

▪ Java Driver Compatibility
– Version 3.11 thru 4.2

▪ Node.js Driver Compatibility
– Version 3.3. thru 3.6

▪ PHP Driver Compatibility
– PHPLIB 1.0 + mongodb-1.1

– ext 1.6 + lib 1.5 thru ext 1.9 + lib 1.8

▪ Python Driver Compatibility
– Use PyMongo 3.9 thru 3.11

– Compatible with Python 2.7, 3.4-3.7

▪ Ruby Driver Compatibility
– MongoDB Ruby Driver Version 2.2

▪ Scala Driver Compatibility
– Version 2.7-4.2

▪ Informix is compatible with the MongoDB 3.2-4.2 API’s versions.

© 2017 IBM Corporation241

All versions should be checkout with Informix Support and documentation. Versioning shown

above is based on Mongo API 4.2, the latest supported API for Informix. Not all MongoDB

supported drivers are shown above.

https://docs.mongodb.com/drivers/c/
https://docs.mongodb.com/drivers/cxx/
https://docs.mongodb.com/drivers/cxx/
https://docs.mongodb.com/drivers/cxx/
https://docs.mongodb.com/drivers/cxx/
https://docs.mongodb.com/drivers/cxx/
https://docs.mongodb.com/drivers/cxx/
https://docs.mongodb.com/drivers/cxx/
https://docs.mongodb.com/drivers/cxx/

MQTT and Informix

© 2021 IBM Corporation

MQTT & JSON – Internet of Things (IoT) (1)

▪ Load JSON documents with the MQTT protocol by defining a wire

listener of type MQTT.

▪ The MQTT protocol is a light-weight messaging protocol that you can

use to load data from devices or sensors:
– Use the MQTT protocol with Informix to publish data from sensors into a time

series that contains a BSON column.

© 2017 IBM Corporation243

MQTT & JSON – Internet of Things (IoT) (2)

▪ Informix supports the following operations for MQTT:
– CONNECT

– PUBLISH (equivalent to insert)

– DISCONNECT

▪ Configure an MQTT wire listener by setting the listener.type=mqtt

parameter in the wire listener configuration file.
– From an MQTT client, you send PUBLISH packets to insert data.

– You can authenticate MQTT client users through the wire listener.

– Network Connections via TCP/IP or TLS and WebSocket; not UDP 1

• The MQTT protocol requires an underlying transport that provides an ordered,

lossless, stream of bytes from the Client to Server and Server to Client.
❑ The transport protocol used to carry MQTT 3.1 & 3.1.1 is TCP/IP

❑ TCP ports 8883 (TLS) and 1883 (non TLS) communications respectively are used

© 2017 IBM Corporation244

MQTT & JSON – Connect & Publish

▪ Connect (database_name.user_name)
– Include a Connect packet to identify the client user.

– If authentication is enabled in the MQTT wire listener with the

authentication.enable=true setting, specify a user name and password.
• User name includes the database name in the following format:

database_name.user_name.

• Example: connect to the database mydb as user joe with the password pass4joe:
❑ CONNECT(mydb.joe, pass4joe)

▪ Publish (topicName, { message }
– The Publish packet maps to the MongoDB insert or create command.

– The topicName field must identify the target database and table in the following

format: database_name/table_name,

– The message field must be in JSON format.
• If you are inserting data into a relational table, the field names in the JSON documents

must correspond to column names in the target table.

– The following example inserts a JSON document into the sensordata table in the

mydb database:
• PUBLISH(mydb/sensordata, { "id": "sensor1234", "reading": 87.5})

© 2017 IBM Corporation245

▪ Prerequisites:
– Cannot presently create a time series through the MQTT wire listener

– Create a JSON time series with the REST API, the MongoDB API, or SQL

statements

– TimeSeries row type consists of a time stamp and BSON columns

– Example: In SQL, with row type, accompanying table, and storage container with

record insert for the data:

• CREATE ROW TYPE ts_data_j2(tstamp datetime year to fraction(5), reading

BSON);

• CREATE TABLE IF NOT EXISTS tstable_j2(id INT NOT NULL PRIMARY KEY, ts

timeseries(ts_data_j2)) LOCK MODE ROW;

• EXECUTE PROCEDURE TSContainerCreate('container_j', 'dbspace1', 'ts_data_j2',

512, 512);

• INSERT INTO tstable_j2 VALUES(1, 'origin(2014-01-01 00:00:00.00000),

calendar(ts_15min), container(container_j), regular, threshold(0), []');

•

– Create a virtual table with a JSON time series
• EXECUTE PROCEDURE TSCreateVirtualTab("sensordata", "tstable_j2");

MQTT & JSON – Internet of Things (IoT) (4)

© 2017 IBM Corporation246

Questions

© 2021 IBM Corporation247

Appendix A - MongoDB Shell Supported

db.collection commands – released 12.10xC8

© 2021 IBM Corporation

Appendix A – MongoDB Shell Supported db.collection commands (1)

MongoDB

Command

JSON

Collection

Relational

Tables

Details

aggregate no no

count yes yes

createIndex yes yes You can use the MongoDB createIndex syntax to create

an index that works for all data types.

For example:

db.collection.createIndex({ zipcode: 1 })

db.collection.createIndex({ state: 1, zipcode: -1})

You can use the Informix createIndex syntax to create an

index for a specific data type.

For example:

db.collection.createIndex({ zipcode : [1, “$int”] })

db.collection.createIndex({ state: [1, “$string”],

zipcode: [-1, “$int”] })

Tip: If you are creating an index on a field that has a fixed

data type, you can get better query performance by using

the Informix createIndex syntax.

dataSize yes no

distinct yes yes

drop yes yes

© 2017 IBM Corporation249

Appendix A – MongoDB Shell Supported db.collection commands (2)

MongoDB

Command

JSON

Collections

Relational

Tables

Details

dropIndex yes yes

dropIndexes yes no

ensureIndex yes yes You can use the MongoDB ensureIndex syntax to

create an index that works for all data types.

For example:

db.collection.ensureIndex({ zipcode: 1 })

db.collection.ensureIndex({ state: 1, zipcode: -1})

You can use the Informix ensureIndex syntax to create

an index for a specific data type.

For example:

db.collection.ensureIndex({ zipcode : [1, “$int”] })

db.collection.ensureIndex({ state: [1,

“$string”],zipcode: [-1, “$int”] })

Tip: If you are creating an index on a field that has a

fixed data type, better query performance can be had

by using the Informix ensureIndex syntax.

find yes yes

findAndModify yes yes

© 2017 IBM Corporation250

Appendix A – MongoDB Shell Supported db.collection commands (3)

MongoDB

Command

JSON

Collections

Relational

Tables

Details

findOne yes yes

getIndexes yes no

getShardDistribution no no

getShardVersion no no

getIndexStats no no This is deprecated in MongoDB 3.0

group no no

indexStats no no This is deprecated in MongoDB 3.0

insert yes yes

isCapped yes yes This command returns false because capped

collections are not directly supported in Informix.

mapReduce no no

© 2017 IBM Corporation251

Appendix A – MongoDB Shell Supported db.collection commands (4)

MongoDB

Command

JSON

Collections

Relational

Tables

Details

reIndex no no

remove yes yes The justOne option is not supported. This command

deletes all documents that match the query criteria.

renameCollection no no

save yes no

stats yes no

storageSize yes no

totalSize yes no

update yes yes The multi option is supported only if

update.one.enable=true is set in the wire listener

file. Multi-parameter is ignore for relational table; all

docs are updated meeting the query criteria. If

update.one.enable=false, all documents that match

the query criteria are updated.

validate no no

© 2017 IBM Corporation252

Appendix B - MongoDB & Informix Command

Support – released 12.10xC8

© 2021 IBM Corporation

Appendix B - MongoDB Operations and Informix

▪ MongoDB read and write operations on existing relational tables are

run as if the table were a collection.

▪ The wire listener determines whether the accessed entity is a

relational table and converts the basic MongoDB operations on that

table to SQL, and then converts the returned values back into a JSON

document.

▪ The initial access to an entity results in an extra call to the Informix

server:
– However, the wire listener caches the name and type of an entity so that

subsequent operations do not require an extra call.

▪ MongoDB operators are supported on both JSON collections and

relational tables, unless explicitly stated otherwise.

© 2017 IBM Corporation254

Appendix B - MongoDB Command Support (1)

▪ User Commands - Aggregation Commands

▪ User Commands - Geospatial Commands

MongoDB

Command

JSON

Collections

Relational

tables

Details

aggregate yes yes The wire listener supports version 2.4 of the MongoDB

aggregate command, which returns a command result.

count yes yes Count items in a collection

distinct yes yes

group no no

mapReduce no no

MongoDB

Command

JSON

Collections

Relational

Tables

Details

geoNear yes no Supported by using the GeoJSON format. The MongoDB

legacy coordinate pairs are not supported.

geoSearch no no

geoWalk no no

© 2017 IBM Corporation255

Appendix B - MongoDB Command Support (2)

▪ User Commands - Query and Write Operation Commands

MongoDB

Command

JSON

Collections

Relational

Tables

Details

delete yes yes

eval no no

findAndModify yes yes

getLastError yes yes For relational tables, the findAndModify command is only

supported for tables that have a primary key, a serial

column, or a rowid.

getPrevError no no

insert yes yes

resetError no no

text no no Text queries are supported by using the $text or $ifxtext

query operators, not through the text command

update yes yes

© 2017 IBM Corporation256

Appendix B - MongoDB Command Support (3)

▪ Database Operations – Authentication Commands

▪ Database Operations – Diagnostic Commands

MongoDB Command Supported Details

authenticate yes

authSchemaUpgrade yes

getonce yes

logout yes

MongoDB Command Supported Details

buildInfo yes Whenever possible, the Informix output fields are identical

to MongoDB. There are additional fields that are unique

to Informix.

collStats yes The value of any field that is based on the collection size

is an estimate, not an exact value. For example, the value

of the field 'size' is an estimate.

connPoolStats no

© 2017 IBM Corporation257

Appendix B - MongoDB Command Support (4)

▪ Database Operations – Diagnostic Commands (cont’d)

MongoDB Command Supported Details

cursorInfo no

dbStats yes The value of any field that is based on the collection

size is an estimate, not an exact value. For example,

the value of the field 'dataSize' is an estimate.

features yes

getCmdLineOpts yes

getLog no

hostInfo yes The memSizeMB, totalMemory, and freeMemory

fields indicate the amount of memory available to the

Java virtual machine (JVM) that is running, not the

operating system values.

indexStats no Deprecated in MongoDB 3.0

listCommands no

© 2017 IBM Corporation258

Appendix B - MongoDB Command Support (5)

▪ Database Operations – Diagnostic Commands (cont’d)

MongoDB Command Supported Details

listDatabases yes The value of any field that is based on the collection size

is an estimate, not an exact value. For example, the

value of the field 'sizeOnDisk' is an estimate.

The listDatabases command performs expensive and

CPU-intensive computations on the size of each

database in the Informix instance. You can decrease the

expense by using the sizeStrategy option.

ping yes

serverStatus yes

top no

whatsmyurl yes

© 2017 IBM Corporation259

Appendix B - MongoDB Command Support (6)

▪ Database Operations – Instance Administration Commands

MongoDB Command JSON

Collections

Relational

Tables

Details

clone no no

cloneCollection no no

cloneCollectionAsC

apped

no no

collMod no no

compact no no

convertToCapped no no .

copydb no no

create yes no Informix does not support the following flags:

• capped

• autoIndexID

• size

• max

createIndexes yes yes

drop yes yes Informix does not lock the database to block

concurrent activity.

© 2017 IBM Corporation260

Appendix B - MongoDB Command Support (7)

▪ Database Operations – Instance Administration Commands (cont’d)

MongoDB

Command

JSON

collections

Relational

Tables

Details

dropDatabase yes yes

dropIndexes yes no The MongoDB deleteIndexes command is equivalent.

filemd5 yes yes

fsync no no

getParameter no no

listCollections yes yes The includeRelational and includeSystem flags are

supported to include or exclude relational or system

tables in the results.

Default is includeRelational=true and

includeSystem=false.

listindexes yes yes

logRotate no no

reIndex no no

renameCollection no no .

repairDatabase no no

© 2017 IBM Corporation261

Appendix B - MongoDB Command Support (8)

▪ Database Operations – Instance Administration Commands (cont’d)

MongoDB

Command

JSON

collections

Relational

Tables

Details

setParameter no no

shutdown yes yes The timeoutSecs flag is supported. In the Informix, the

timeoutSecs flag determines the number of seconds

that the wire listener waits for a busy client to stop

working before forcibly terminating the session. The

force flag is not supported.

touch no no

© 2017 IBM Corporation262

Appendix B - MongoDB Command Support (9)

▪ Replication Commands Support

Name Supported

isMaster yes

replSetFreeze no

replSetGetStatus no

replSetInitiate no

replSetMaintenance no

replSetReconfig no

replSetStepDown no

replSetSyncFrom no

Resync no

© 2017 IBM Corporation263

Appendix B - MongoDB Command Support (10)

▪ Sharding Commands

MongoDB

Command

JSON

Collections

Relational

tables

Details

addShard yes yes The MongoDB maxSize and name options are not

supported. In addition to the MongoDB command

syntax for adding a single shard server, you can use

the Informix specific syntax to add multiple shard

servers in one command by sending the list of shard

servers as an array.

enableSharding yes yes Action is not required for Informix.

flushRouterConfig no no

isdbgrid yes yes

listShards yes yes Equivalent Informix command is cdr list server.

movePrimary no no .

removeShard no no

shardCollection yes yes The equivalent Informix command is cdr define

shardCollection. The MongoDB unique and

numInitialChunks options are not supported.

shardingstate no no

split no no

© 2017 IBM Corporation264

Appendix B - MongoDB Command Support (11)

▪ Query Selectors - Array query operations

▪ Comparison query operators

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$elemMatch yes no

$size yes no Supported for simple queries only. The operator is supported

only when it is the only condition in the query document.

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$all yes yes Supported for primitive values and simple queries only. The

operator is only supported when it is the only condition in the

query document.

$gt yes yes Greater than

$gte yes yes Greater than or equal to

$in yes yes

$lt yes yes Less than

$lte yes yes Less than or equal to

$ne yes yes Not equal

© 2017 IBM Corporation265

Appendix B - MongoDB Command Support (12)

▪ Comparison query operators (cont’d)
MongoDB

Command

JSON

Collections

Relational

Tables

Details

$all yes yes Supported for primitive values and simple queries only. The

operator is only supported when it is the only condition in the

query document. Not in operator or not exists

$gt yes yes

$gte yes yes

$in yes yes

$lt yes yes

$lte yes yes

$ne yes yes

$nin yes yes

$query yes yes Returns documents matching its argument

© 2017 IBM Corporation266

Appendix B - MongoDB Command Support (13)

▪ Element query operators

▪ Evaluation query operators

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$mod yes yes

$regex yes yes The only supported value for the $options flag is i, which

specifies a case-insensitive search.

$text yes yes The $text query operator support is based on MongoDB

version 2.6. You can customize your text index and take

advantage of additional text query options by creating a basic

text search index with the createTextIndex command.

$where no no

© 2017 IBM Corporation267

Appendix B - MongoDB Command Support (14)

▪ Geospatial query operators
– Geospatial queries are supported by using the GeoJSON format. The legacy

coordinate pairs are not supported.

▪ JavaScript query operators
– These are currently (as of 12.10.xC8) not supported.

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$geoWithin yes no

$geoIntersects yes no

$near yes no

$nearSphere yes no

© 2017 IBM Corporation268

Appendix B - MongoDB Command Support (15)

▪ Logical Query Operators

▪ Java Script query operators are not supported as of this time.

▪ Projection Operators

MongoDB

Command

JSON

Collections

Relational

tables

Details

$and yes yes

$or yes yes

$not yes yes

$nor yes yes

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$ no no

$elemMatch yes no

$meta yes yes

$slice no no

© 2017 IBM Corporation269

Appendix B - MongoDB Command Support (16)
▪ Projection Operators - Comparison query operators

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$comment no no

$explain yes yes

$hint yes no

$orderby yes yes Not supported for sharded data.

© 2017 IBM Corporation270

Appendix B - MongoDB Command Support (17)

▪ Array Update Operators

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$ no no

addToSet yes no Supported for primitive values only. The operator is not

supported on arrays and objects.

$pop yes no

$pullAll yes no Supported for primitive values only. The operator is not

supported on arrays and objects.

$pull yes no Supported for primitive values only. The operator is not

supported on arrays and objects.

$pushAll yes no

$push yes no

© 2017 IBM Corporation271

Appendix B - MongoDB Command Support (18)

▪ Array Update Operators Modifiers

▪ Bitwise Update Operators

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$each yes no

$slice yes no

$sort yes no

$position no no

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$bit yes no

© 2017 IBM Corporation272

Appendix B - MongoDB Command Support (19)

▪ Field Update Operators

▪ Isolation update operators
– The isolation update operators are not supported.

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$inc yes yes

$rename yes no

$setOnInsert yes no

$set yes yes

$unset yes yes

© 2017 IBM Corporation273

Appendix B - MongoDB Command Support (20)

▪ Aggregation Framework Operators – Pipeline Operators

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$geoNear yes no Supported by using the GeoJSON format. The MongoDB

legacy coordinate pairs are not supported.

Geospatial query operators are not supported for sharded data.

You cannot use dot notation for the distanceField and

includeLocs parameters.

$group yes yes

$limit yes yes

$match yes yes

$out no no

$project partial partial You can use $project to include fields from the original

document, for example { $project : { title : 1 , author : 1 }}.

You cannot use $project to insert computed fields, rename

fields, or create and populate fields that hold subdocuments.

Projection operators are not supported.

© 2017 IBM Corporation274

Appendix B - MongoDB Command Support (21)

▪ Aggregation Framework Operators – Pipeline Operators (cont’d)

▪ Expression Operators - $group operators

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$redact no no

$skip yes yes

$sort yes yes Command supported only for collections that are not sharded.

$unwind yes no

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$addtoSet yes no

$first no no

$last no no

$max yes yes

$min yes yes

© 2017 IBM Corporation275

Appendix B - MongoDB Command Support (22)

▪ Expression Operators - $group operators (cont’d)

MongoDB

Command

JSON

Collections

Relational

Tables

Details

$avg yes yes

$push yes no

$sum yes yes

© 2017 IBM Corporation276

Appendix B - MongoDB Command Support (23)

Name Supported Details

createUser Yes Supported for MongoDB API ver 2.6 or higher

dropAllUsersFromDatabase Yes Supported for MongoDB API ver 2.6 or higher

dropUser Yes Supported for MongoDB API ver 2.6 or higher

grantRolesToUser Yes Supported for MongoDB API ver 2.6 or higher

revokeRolesFromUser Yes Supported for MongoDB API ver 2.6 or higher

updateUser Yes Supported for MongoDB API ver 2.6 or higher

usersInfo Yes Supported for MongoDB API ver 2.6 or higher

© 2021 IBM Corporation277

▪ User management commands

Appendix B - MongoDB Command Support (24)

▪ Roles Management commands

© 2021 IBM Corporation278

Name Supported Details

createRole Yes Supported for MongoDB API ver 2.6 or higher

dropAllRolesFromDatabase Yes Supported for MongoDB API ver 2.6 or higher

dropRole Yes Supported for MongoDB API ver 2.6 or higher

grantPrivilegesToRole Yes Supported for MongoDB API ver 2.6 or higher

grantRolesToRole Yes Supported for MongoDB API ver 2.6 or higher

invalidateUserCache No

rolesInfo Yes Supported for MongoDB API ver 2.6 or higher

revokePrivilegesFromRole Yes Supported for MongoDB API ver 2.6 or higher

revokeRolesFromRole Yes Supported for MongoDB API ver 2.6 or higher

updateRole Yes Supported for MongoDB API ver 2.6 or higher

Appendix C – Extensions to MongoDB

Supported – released 12.10.xC8

© 2021 IBM Corporation

Agenda

▪ Query Operators
– $ifxtext

– $like

– $nativecursor

▪ createTextIndex

▪ exportCollection

▪ importCollection

▪ killCursors

▪ lockAccounts

▪ runFunction

▪ runProcedure

▪ transaction

▪ unlockAccounts

© 2017 IBM Corporation280

Query operators - $ifxtext & $like

▪ Query Operator: $ifxtext
– Can be used in all MongoDB functions that accept query operators

– $ifxtext – uses Basic Text Search (BTS)
• Passes the search string as-is to the bts_contains() function.

• When using relational tables, the MongoDB $text and Informix $ifxtext query operators

both require a column name, specified by $key, in addition to the $search string.

• The $search string can be a word or a phrase as well as optional query term modifiers,

operators, and stopwords.

• Can include field names to search in specific fields.

• Search string syntax in the $ifxtext query operator is the same as the bts_contains()

search syntax criteria included in an SQL query.
❑ Example:

❑ db.collection.find({ "$ifxtext" : { "$search" : "te?t” } })

▪ Query Operator: $like
– The $like operator tests for matching character strings

– Maps to the SQL LIKE query operator.

– In the following example, a wildcard search is run for strings that contain

Informix:
• db.collection.find({ "$like" : "%Informix%")

© 2017 IBM Corporation281

Query modifier - $nativeCursor

▪ Holds open a true cursor on the Informix database server during a

query

▪ A native cursor requires more wire listener resources because

connections and result set objects are tied to a single session, but

the cursor guarantees consistent query results

▪ Control the cursor idle timeout with the cursor.idle.timeout wire

listener property
– For REST API queries, use the killCursors command to close the cursor. In

the following example, query results are returned in a cursor:

– db.collection.find().addSpecial("$nativeCursor",1);

© 2017 IBM Corporation282

createTextIndex

▪ Basic Text Search (bts) indexes are now possible with MongoDB,

JSON and Informix.
– Widely used functionality in this environment.

▪ createTextIndex – creates Informix bts indexes within JSON.
– Text Indexes created by using the Informix createTextIndex function must be

queried by using the Informix $ifxtext query operator.

– Text Indexes created by using the MongoDB syntax must be queried by using

the MongoDB $text query operator.

– db.runCommand({ createTextIndex: “mytab”, name:”myidx”,

key:{“title”:”text”, “abstract”:”text”}, options : {} })

▪ The following example creates an index named articlesIdx on the

articles collection by using the bts parameter all_json_names="yes".
– db.runCommand({ createTextIndex: “articles”, name:”articlesIdx”, options

: {all_json_names : "yes"} })

© 2017 IBM Corporation283

exportCollection

▪ Export JSON collections from the wire listener to a file.

▪ >>-exportCollection:"collection_name",--file:"filepath",-------->

▪ .-json-.

▪ >--format:-+-+-"-+--------+-"-+--+---+----+-->

▪ | '-"jsonArray"--' | .-,------. | |

▪ | | V | | |

▪ | '-,--fields--:--{--"----filter-+--"--}--' |

▪ | .-,------. |

▪ | V | |

▪ '-"csv",-fields--:--{--"----filter-+--"--}--------------------------'

▪ ---+--+--------------<>

▪ '-,--query--:--{--"--query_document--"--}-'

© 2017 IBM Corporation284

exportCollection

▪ exportCollection
– This required parameter specifies the collection name to export.

▪ file
– Required parameter specifying host machine output file path where the wire

listener is running. For example:
• UNIX is file:"/tmp/export.out"

• Windows is file:"C:/temp/export.out"

▪ format
– This required parameter specifies the exported file format.

▪ json
– Default. The .json file format. a JSON-serialized document per line is exported.

– The following exports all collection documents named c by using the json format:

– > db.runCommand({exportCollection:"c",file:"/tmp/export.out"

,format:"json"}) { "ok":1, "n":1000, "millis":NumberLong(119),

"rate":8403.361344537816 }

– "n" is the number of documents that are exported,

– "millis" is the number of milliseconds it took to export, and

– "rate" is the number of documents per second that are exported.

© 2017 IBM Corporation285

exportCollection

▪ jsonArray
– The .jsonArray file format.

• This format exports an array of JSON-serialized documents with no line breaks.

• The array format is JSON-standard.

– Following exports all documents from collection c using the jsonArray format:

– > db.runCommand({exportCollection:"c",file:"/tmp/export.out" ,

format:"jsonArray"}) { "ok":1, "n":1000, "millis":NumberLong(81),

"rate":12345.67901234568 }

– Where "n" is the number of documents that are exported,

– "millis" is the number of milliseconds it took to export, and

– "rate" is the number of documents per second that are exported.

▪ csv
– The .csv file format.

• Comma-separated values are exported.

• You must specify which fields to export from each document.

• The first line of the .csv file contains the fields and all subsequent lines contain the

comma-separated document values.

© 2017 IBM Corporation286

exportCollection

▪ fields
– This parameter specifies which fields are included in the output file.

• Required for the csv format, but optional for the json and jsonArray formats.

– Following command exports all documents from the collection that is named c

by using the csv format, only output the "_id" and "name" fields:

– > db.runCommand({exportCollection:"c",file:"/tmp/export.out"

,format:"csv",fields:{"_id":1 ,"name":"1"}}) { "ok":1, "n":1000,

"millis":NumberLong(57), "rate":17543.859649122805 }

– Where "n" is the number of documents that are exported,

– "millis" is the number of milliseconds it took to export, and

– "rate" is the number of documents per second that are exported.

▪ query
– Optional parameter specifies a query document that identifies which documents

are exported. The following example exports all documents from the collection

that is named c that have a "qty" field that is less than 100:

– > db.runCommand({exportCollection:"c",file:"/tmp/export.out"

,format:"json",query:{"qty":{"$lt":100}}})

{"ok":1,"n":100,"millis":NumberLong(5),"rate":20000}

© 2017 IBM Corporation287

importCollection

▪ Import JSON collections from the wire listener to a file.

▪ >>-importCollection:"collection_name",--file:"filepath",-------->

▪ .-json---------.

▪ >--format:"-+-jsonArray-+-"------------------------------------><

▪ '-csv-----------'

▪ importCollection
– The required parameter specifies the collection name to import.

▪ file
– This required parameter specifies the input file path.

– Example,

– file: "/tmp/import.json".

– Important: The input file must be on the same host machine where the wire

listener is running.

© 2017 IBM Corporation288

importCollection

▪ format
– This required parameter specifies the imported file format.

– json
• Default. The .json file format.

• Following example imports documents from the collection that is named c by using

json format:

– db.runCommand({importCollection:"c",file:"/tmp/import.out"

,format:"json"})

– jsonArray
• The .jsonArray file format.

• The following example imports documents from the collection c by using jsonArray

– db.runCommand({exportCollection:"c",file:"/tmp/import.out"

,format:"jsonArray"})

– csv
• The .csv file format.

© 2017 IBM Corporation289

lockAccounts – Lock a Database/User Account

▪ If you specify the lockAccounts:1 command without specifying a db

or user argument, all accounts in all databases are locked.

▪ Run this command as instance administrator.

▪ Syntax:
▪ >>-lockAccounts:----1,-+---+----------><

▪ +-db:-+-"database_name"---+-“---+

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]--+ |

▪ | +-{"$regex":"json_document"}-----------------------------------+ |

▪ | | .-,---| | |

▪ | | V | | |

▪ | '-{---+-"include":-+-"database_name"----------------+-+-+-}-' |

▪ | | | .-,--------------------------. | | |

▪ | | | V | | | |

▪ | | +-[---"database_name"-+-]---------+ | |

▪ | | '-{"$regex":"json_document"}---‘ | |

▪ | '-"exclude":-+-"database_name"----------------+--' |

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]----+ |

▪ | '- {"$regex":"json_document"}-' |

▪ '-user:-+-"user_name"------+--'

▪ '-"json_document"-'

© 2017 IBM Corporation290

lockAccounts – Lock a Database/User Account

▪ lockAccounts:1
– Required parameter locks a database or user account.

▪ db
– Optional parameter specifies the database name of an account to lock.

– For example, to lock all accounts in database that is named foo:

– db.runCommand({lockAccounts:1,db:"foo"})

▪ exclude
– Optional parameter specifies the databases to exclude.

– For example, to lock all accounts on the system except those in the databases

named alpha and beta:

– db.runCommand({lockAccounts:1,db:{"exclude":["alpha","beta"]})

© 2017 IBM Corporation291

lockAccounts – Lock a Database/User Account

▪ include
– Optional parameter specifies the databases to include.

– To lock all accounts in the databases named delta and gamma:

– db.runCommand({lockAccounts:1,db:{"include":["delta","gamma"]})

▪ $regex
– Optional evaluation query operator selects values from a specified JSON

document.

– To lock accounts for databases that begin with the character a. and end in e:

▪ db.runCommand({lockAccounts:1,db:{"$regex":"a.*e"})

▪ user
– Optional parameter specifies the user accounts to lock.

– For example, to lock the account of all users that are not named alice:

– db.runCommand({lockAccounts:1,user:{$ne:"alice"}});

© 2017 IBM Corporation292

killCursors

▪ Close native cursors that were created with the &nativeCursor query

modifier in a REST API query.

▪ .-------------.

▪ V |

▪ >>-killCursors:1--cursorIds:[---cursorID-+-]-------------------><

▪ killCursors
– This required parameter closes native cursors.

▪ cursorIds
– This required parameter lists the native cursor IDs to close.

▪ The following command closes the cursor with the ID of 22:

▪ GET /dbname/$cmd?query={killCursors:1, cursorsIds:[22]}

© 2017 IBM Corporation293

runFunction

▪ Run an SQL function through the wire listener. Command is

equivalent to the SQL statement EXECUTE FUNCTION.

▪ >>-runFunction:"function_name"---------------------------------->

▪ >--+---+---------------------------><

▪ | .-,--------. |

▪ | V | |

▪ '-,"arguments":[---argument-+-]---'

▪ runFunction
– This required parameter specifies the SQL function name to run.

– Example, a current function returns the current date and time:

– db.runCommand({runFunction:"current"}) {"returnValue": 2016-04-05

12:09:00, "ok":1}

© 2017 IBM Corporation294

runFunction

▪ arguments
– This parameter specifies an array of argument values to the function.

– You must provide as many arguments as the function requires.

– For example, an add_values function requires two arguments to add together:

– db.runCommand({runFunction:"add_values", "arguments":[3,6]})

{"returnValue": 9, "ok":1}

– The following example returns multiple values from a func_return3 function:

– db.runCommand({runFunction:"func_return3", "arguments":[101]})

{"returnValue": {"serial_num":1103, "name":"Newton", "points":100},

"ok":1}

© 2017 IBM Corporation295

runProcedure

▪ Run an SQL stored procedure through the wire listener.
– This command is equivalent to the SQL statement EXECUTE PROCEDURE.

▪ >>-runProcedure:"procedure_name"-------------------------------->

▪ >--+---+---------------------------><

▪ | .-,-------------. |

▪ | V | |

▪ '-,"arguments":[---argument-+-]-'

▪ runProcedure
– Required parameter specifies the name of the SQL procedure to run.

– For example, a colors_list stored procedure, which uses a WITH RESUME

clause in its RETURN statement, returns multiple rows about colors:

– > db.runCommand({runProcedure:"colors_list"}) {"returnValue": [

{"color" : "Red","hex" : "FF0000"}, {"color" : "Blue","hex" : "0000A0"},

{"color" :"White","hex" : "FFFFFF"}], "ok" : 1}

© 2017 IBM Corporation296

runProcedure

▪ arguments
– This parameter specifies an array of argument values to the procedure.

– You must provide as many arguments as the procedure requires.

– For example, an increase_price procedure requires two arguments to identify

the original price and the amount of increase:

– db.runCommand({runProcedure:"increase_price", "arguments":[101,

10]}) {"ok":1}

© 2017 IBM Corporation297

Extension: MongoDB Authentication Configuration

▪ Procedures in order of operation:
– Start the MongoDB wire listener with authentication turned off.

– For each database, add the users that you want grant access.
• For example, to grant user bob readWrite access:

❑ db.addUser({user:"bob", pwd: "myPass1", roles:["readWrite","sql"]})

– Stop the wire listener.

– Set authentication.enable=true in the properties file.

– Restart the wire listener.

▪ Based on MongoDB 2.4

▪ After the wire listener is turned back on, each client will have to

authenticate.

© 2017 IBM Corporation298

lockAccounts – Lock a Database/User Account

▪ If you specify the lockAccounts:1 command without specifying a db

or user argument, all accounts in all databases are locked.

▪ Run this command as instance administrator.

▪ Syntax:
▪ >>-lockAccounts:----1,-+---+----------><

▪ +-db:-+-"database_name"---+-“---+

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]--+ |

▪ | +-{"$regex":"json_document"}-----------------------------------+ |

▪ | | .-,---| | |

▪ | | V | | |

▪ | '-{---+-"include":-+-"database_name"----------------+-+-+-}-' |

▪ | | | .-,--------------------------. | | |

▪ | | | V | | | |

▪ | | +-[---"database_name"-+-]---------+ | |

▪ | | '-{"$regex":"json_document"}---‘ | |

▪ | '-"exclude":-+-"database_name"----------------+--' |

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]----+ |

▪ | '- {"$regex":"json_document"}-' |

▪ '-user:-+-"user_name"------+--'

▪ '-"json_document"-'

© 2017 IBM Corporation299

lockAccounts – Lock a Database/User Account

▪ lockAccounts:1
– Required parameter locks a database or user account.

▪ db
– Optional parameter specifies the database name of an account to lock.

– For example, to lock all accounts in database that is named foo:

– db.runCommand({lockAccounts:1,db:"foo"})

▪ exclude
– Optional parameter specifies the databases to exclude.

– For example, to lock all accounts on the system except those in the databases

named alpha and beta:

– db.runCommand({lockAccounts:1,db:{"exclude":["alpha","beta"]})

© 2017 IBM Corporation300

lockAccounts – Lock a Database/User Account

▪ include
– Optional parameter specifies the databases to include.

– To lock all accounts in the databases named delta and gamma:

– db.runCommand({lockAccounts:1,db:{"include":["delta","gamma"]})

▪ $regex
– Optional evaluation query operator selects values from a specified JSON

document.

– To lock accounts for databases that begin with the character a. and end in e:

▪ db.runCommand({lockAccounts:1,db:{"$regex":"a.*e"})

▪ user
– Optional parameter specifies the user accounts to lock.

– For example, to lock the account of all users that are not named alice:

– db.runCommand({lockAccounts:1,user:{$ne:"alice"}});

© 2017 IBM Corporation301

Extension: Transactions

▪ These do not exist in MongoDB natively; optionally, these are

Informix extensions that enable or disable transactions for a session.
– Binds/unbinds a MongoDB session in database

– enable
• Enables transactions for the current session in the current db

• db.runCommand ({transaction : “enable” })

– disable
• Disables transactions for the current session in the current db

• db.runCommand ({transaction : “disable” })

– status
• Returns status of transaction enablement of current session and whether the current

db supports transaction processing.

• db.runCommand ({transaction : “status” })

– commit
• Commits the transaction for the current session in the current db if transactions are

enabled; otherwise an error is produced if disabled.

• db.runCommand ({transaction : “commit” })

– rollback
• Rolls back a transaction for the current session in the current db if transactions are

enabled; otherwise an error is produced if disabled.

• db.runCommand ({transaction : “rollback” })
© 2017 IBM Corporation302

Extension: Transactions (cont’d)

▪ execute
– This optional parameter runs a batch of commands as a single transaction.

– If transaction mode is not enabled for the session, this parameter enables

transaction mode for the duration of the transaction.

– Command documents include insert, update, delete, findAndModify, and find
• insert, update, and delete command documents, you cannot set the ordered property

to false.

• Use a find command document to run SQL & NoSQL queries, but not commands.

• A find command document can include the $orderby, limit, skip, and sort operators.

• The following example deletes a document from the inventory collection and inserts

documents into the archive collection:

db.runCommand({"transaction" : "execute", "commands" : [{"delete":"inventory",

"deletes" : [{ "q" : { "_id" : 432432 } }] }, {"insert" : "archive", "documents" : [{

"_id": 432432, "name" : "apollo", "last_status" : 9}] }] })

‒ The execute parameter has an optional finally argument if you have a set of

command documents to run at the end of the transaction regardless of whether

the transaction is successful.

© 2017 IBM Corporation303

Extension: Transactions (cont’d)

▪ Example:

– db.runCommand({"transaction" : "execute", "commands" : [{"find" :

"system.sql", "filter" : {"$sql" : "SET ENVIRONMENT USE_DWA

'ACCELERATE ON'" } }, {"find" : "system.sql", "filter" : {"$sql" : "SELECT

SUM(s.amount) as sum FROM sales AS s WHERE s.prid = 100 GROUP BY

s.zip" } }], "finally" : [{"find":"system.sql", "filter" : {"$sql" : "SET

ENVIRONMENT USE_DWA 'ACCELERATE OFF'" } }] })

▪ All transaction commands for Informix work on non-sharded servers

only.

© 2017 IBM Corporation304

unlockAccounts – Unlock a Database/User Account

▪ If you specify the unlockAccounts:1 without specifying a db or user

argument, all accounts in all databases are unlocked.

▪ Run this command as instance administrator.

▪ >>-unlockAccounts:------1,-+---+-----><

▪ +-db:-+-"database_name"--+-"-+

▪ | | .-,---------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]-------------------------------------+ |

▪ | +-{"$regex":"json_document"}------------------------------+ |

▪ | | .-,---. | |

▪ | | V | | |

▪ | '-{---+-"include":-+-"database_name"------------+-+-+-}-' |

▪ | | | .-,---------------------------. | | |

▪ | | | V | | | |

▪ | | +-[---"database_name"-+-]----- -+ | |

▪ | | '-{"$regex":"json_document"}----' | |

▪ | '-"exclude":-+-"database_name"-----------+-' |

▪ | | .-,--------------------------. | |

▪ | | V | | |

▪ | +-[---"database_name"-+-]---+ |

▪ | '-{"$regex":"json_document"}-' |

▪ '-user:-+-"user_name"-----+--'

▪ '-"json_document"-'

© 2017 IBM Corporation305

unlockAccounts – Unlock a Database/User Account

▪ unlockaccounts:1
– Required parameter unlocks a database or user account.

▪ db
– Optional parameter specifies the database name of an account to unlock.

– To unlock all accounts in database that is named foo:

– db.runCommand({unlockAccounts:1,db:"foo"})

▪ exclude
– Optional parameter specifies the databases to exclude.

– To unlock all accounts on the system except those in the databases named

alpha and beta:

– db.runCommand({unlockAccounts:1,db:{"exclude":["alpha","beta"]})

© 2017 IBM Corporation306

unlockAccounts – Unlock a Database/User Account

▪ include
– Optional parameter specifies the databases to include.

– To unlock all accounts in the databases named delta and gamma:

– db.runCommand({unlockAccounts:1,db:{"include":["delta","gamma"]})

▪ $regex
– Optional evaluation query operator selects values from a specified JSON

document.

– To unlock accounts for databases that begin with the character a. and end in e:

– db.runCommand({unlockAccounts:1,db:{"$regex":"a.*e"})

▪ user
– This optional parameter specifies the user accounts to unlock.

– For example, to unlock the account of all users that are not named alice:

– db.runCommand({unlockAccounts:1,user:{$ne:"alice"}});

© 2017 IBM Corporation307

Appendix C - MongoDB API’s Supported –

Released 12.10.xC8

© 2021 IBM Corporation

Appendix C – MongoDB API’s Supported

▪ MongoDB community drivers can be used to store, update, and

query JSON Documents with Informix as a JSON data store:
– Java,

– C/C++,

– Ruby,

– PHP,

– PyMongo

▪ MongoDB API’s to version 4.2 are supported by Informix.

© 2017 IBM Corporation309

Appendix D – MongoDB Supported Command

Utilities & Tools - 12.10.xC8

© 2021 IBM Corporation

Appendix D – MongoDB Supported Command Utilities & Tools

▪ You can use the MongoDB shell and any of the standard MongoDB

command utilities and tools.

▪ Supported MongoDB shell versions: 2.4, 2.6, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0,

4.2.

▪ You can run the MongoDB mongodump and mongoexport utilities

against MongoDB to export data from MongoDB to Informix.

▪ You can run the MongoDB mongorestore and mongoimport utilities

against Informix to import data to MongoDB from Informix.

© 2017 IBM Corporation311

Similar Technical Naming – Informix & Mongo DB (1)

MongoDB

Concept

Informix

Concept

Description

collection table This is the same concept.

In Informix this type of collection is sometimes

referred to as a JSON collection. A JSON

collection is similar to a relational database

table, except it does not enforce a schema.

document record This is the same concept.

In Informix, this type of document is

sometimes referred to as a JSON document.

field column This is the same concept.

© 2017 IBM Corporation312

Similar Technical Naming – Informix & Mongo DB (2)

MongoDB Concept Informix

Concept

Description

master / slave primary

server

/secondary

server

This is the same concept.

However, an Informix secondary server has

additional capabilities. For example, data on a

secondary server can be updated and propagated

to primary servers.

replica set high-

availability

cluster

This is the same concept.

However, when the replica set is updated, it then

sent to all servers, not only the primary server.

sharded cluster sharded

cluster

This is the same concept.

In Informix, a sharded cluster consists of servers

that are sometimes referred to as shard servers.

sharded key shard key This is the same concept.

© 2017 IBM Corporation313

Appendix E – Some New Event Alarms

© 2021 IBM Corporation

Appendix E – New Event Alarms

Class

Id

Internal Name Event

ID

Description

24 ALRMU_85_AUTOTUNE_D

AEMON_FAIL

24013 Auto Tune daemon has insufficient

resources to perform tuning

operations.

Online log: Performance Advisory

User action: Restart the server with more resources

Class

Id

Internal Name Event

ID

Description

24 ALRMU_85_AUTOTUNE_A

DD_CPUVP_FAIL

24014 Auto tuning failed to start a CPU VP

Online log: Performance Advisory

User action: Restart the server with more resources

© 2017 IBM Corporation315

Appendix E – New Event Alarms (cont’d)

Class

Id

Internal Name Event

ID

Description

24 ALRMU_24_ADD_BP_FAIL 24015 Auto tuning was unable to extend the

buffer pool due to insufficient

resources.

Online log: Performance Advisory

User action: Restart the server with more resources

Class

Id

Internal Name Event

ID

Description

85 ALRMU_85_OVER_LLOG 85001 Auto tuning failed to add another

logical log, because adding another

log would exceed the maximum log

space as defined by configuration

parameter AUTO_LLOG.

Online log: Performance Advisory

User action: Increase the maximum amount of log space by changing AUTO_LLOG

configuration parameter.

© 2017 IBM Corporation316

Appendix E – New Event Alarms (cont’d)

Class

Id

Internal Name Event

ID

Description

85 ALRMU_85_OVER_BPOOL 85002 Auto tuning failed to extend a

bufferpool, because the buffer pool

would exceed the maximum amount

of memory or extensions as defined

by configuration parameter

BUFFERPOOL.

Online log: Performance Advisory

User action: Increase the maximum amount defined by the configuration parameter

BUFFERPOOL.

© 2017 IBM Corporation317

Appendix E – New Event Alarms (cont’d)

Class

Id

Internal Name Event

ID

Description

85 ALRMU_85_OVER_CPU 85003 Auto tuning failed to add a CPU VP

because another CPU VP would

exceed the maximum number

specified in the configuration

parameter VPCLASS or exceed the

number of processors on the

computer.

User action: If there are more processors available on the computer, increase the

maximum number of CPU VPs allowed by changing the VPCLASS configuration

parameter.

© 2017 IBM Corporation318

Appendix F – Informix Product Limits

© 2021 IBM Corporation

Agenda

▪ Unix Limits
– System-Level Parameter Limits

– Table-level parameter limits

– Access capabilities

– Informix System Defaults

▪ Windows Limits
– System-Level Parameter Limits

– Table-level parameter limits

– Access capabilities

– Informix System Defaults

© 2017 IBM Corporation320

Informix – Unix/Linux O/S Limits (1)

System-Level Parameters Maximum Capacity per Computer

System

IBM® Informix® systems per computer (Dependent on

available system resources)

255

Maximum number of accessible remote sites Machine specific

Maximum virtual shared memory segment

(SHMVIRTSIZE)

2GB (32-bit platforms) or 4TB (64-bit platforms)

Maximum number of Informix shared memory segments 1024

Maximum address space Machine specific

© 2017 IBM Corporation321

Informix – Unix/Linux O/S Limits (2)

Table-Level Parameters (based on 2K

page size)

Maximum Capacity per Table

Data rows per page 255

Data rows per fragment 4,277,659,295

Data pages per fragment 16,775,134

Data bytes per fragment (excludes Smart Large

Objects (BLOB, CLOB) and Simple Large Objects

(BYTE, TEXT) created in blobspaces)

2K page size = 33,818,670,144

4K page size = 68,174,144,576

8K page size = 136,885,093,440

12K page size = 205,596,042,304

16K page size = 274,306,991,168

Binary Large Object BLOB/CLOB pages 4 TB

Binary Large Objects TEXT/BYTE bytes 4 TB

Row length 32,767

Number of columns 32K

Maximum number of pages per index fragment 2,147,483,647

Key parts per index 16

Columns per functional index 102 (for C UDRs) 341 (for SPL or Java™ UDRs)

© 2017 IBM Corporation322

Informix – Unix/Linux O/S Limits (3)

Table-Level Parameters (based on 2K

page size)

Maximum Capacity per Table

Maximum bytes per index key (for a given page size): 2K page size = 387

4K page size = 796

8K page size = 1615

12K page size = 2435

16K page size = 3254

Maximum size of an SQL statement Limited only by available memory

© 2017 IBM Corporation323

Informix – Unix/Linux O/S Limits (4)

Access Capabilities Maximum Capacity per System

Maximum databases per Informix® system 21 million

Maximum tables per Informix system 477, 102, 080

Maximum active users per Informix (minus the

minimum number of system threads)

32K user threads

Maximum active users per database and table (also

limited by the number of available locks, a tunable

parameter)

32K user threads

Maximum number of open databases in a session 32 databases

Maximum number of open tables per Informix system Dynamic allocation

Maximum number of open tables per user and join Dynamic allocation

Maximum number of open transactions per instance 32,767

Maximum locks per Informix system and database Dynamic allocation

Maximum number of page cleaners 128

Maximum number of partitions per dbspace 4K page size: 1048445, 2K page size: 1048314 (based

on 4-bit bitmaps)

Maximum number of recursive synonym mappings 16

© 2017 IBM Corporation324

Informix – Unix/Linux O/S Limits (5)

Access Capabilities Maximum Capacity per System

Maximum number of tables locked with LOCK TABLE

per user

32

Maximum number of cursors per user Machine specific

Maximum Enterprise Replication transaction size 4 TB

Maximum dbspace size 131 PB

Maximum sbspace size 131 PB

Maximum chunk size 4 TB

Maximum number of chunks 32,766

Maximum number of 2K pages per chunk 2 billion

Maximum number of open Simple Large Objects

(applies only to TEXT and BYTE data types)

20

Maximum number of B-tree levels 20

Maximum amount of decision support memory Machine specific

Utility support for large files 17 billion GB

Maximum number of storage spaces (dbspaces,

blobspaces, sbspaces, or extspaces)

2047

© 2017 IBM Corporation325

Informix – Unix O/S Limits (6)

Database characteristic Informix system default

Table lock mode Page

Initial extent size 8 pages

Next extent size 8 pages

Read-only isolation level (with database transactions) Committed Read

Read-only isolation level (ANSI-compliant database) Repeatable Read

Database characteristic Informix system default

Table lock mode Page

© 2017 IBM Corporation326

Informix – Windows O/S Limits (1)

System-Level Parameters Maximum Capacity per Computer

System

IBM® Informix® systems per computer (Dependent on

available system resources)

255

Maximum number of accessible remote sites Machine specific

Maximum virtual shared memory segment

(SHMVIRTSIZE)

2 GB (32-bit platforms) or 4 TB (64-bit platforms)

Maximum number of Informix shared memory segments 1024

Maximum address space 2.7 GB if 4-gigabyte tuning is enabled:

• All Windows versions later than Windows 2003

• Windows 2003 and earlier versions if the boot.ini

file contains the /3GB switch

1.7 GB for Windows 2003 and earlier versions if the

boot.ini file does not contain the /3GB switch

© 2017 IBM Corporation327

Informix – Windows O/S Limits (2)

Table-Level Parameters (based on 2K

page size)

Maximum Capacity per Table

Data rows per page 255

Data rows per fragment 4,277,659,295

Data pages per fragment 16,775,134

Data bytes per fragment (excludes Smart Large

Objects (BLOB, CLOB) and Simple Large Objects

(BYTE, TEXT) created in blobspaces)

2K page size = 33,818,670,144

4K page size = 68,174,144,576

8K page size = 136,885,093,440

12K page size = 205,596,042,304

16K page size = 274,306,991,168

Binary Large Object BLOB/CLOB pages 4 TB

Binary Large Objects TEXT/BYTE bytes 4 TB

Row length 32,767

Number of columns 32K

Maximum number of pages per index fragment 2,147,483,647

Key parts per index 16

Columns per functional index 102 (for C UDRs) 341 (for SPL or Java™ UDRs)

© 2017 IBM Corporation328

Informix – Windows O/S Limits (3)

Table-Level Parameters (based on 2K

page size)

Maximum Capacity per Table

Maximum bytes per index key (for a given page size): 2K page size = 387

4K page size = 796

8K page size = 1615

12K page size = 2435

16K page size = 3254

Maximum size of an SQL statement Limited only by available memory

© 2017 IBM Corporation329

Informix – Windows O/S Limits (4)

Access Capabilities (1) Maximum Capacity per System

Maximum databases per IBM® Informix® system 21 million

Maximum tables per IBM Informix system 477, 102, 080

Maximum active users per IBM Informix (minus the

minimum number of system threads)

32K user threads

Maximum active users per database and table (also

limited by the number of available locks, a tunable

parameter)

32K user threads

Maximum number of open databases in a session 8 databases

Maximum number of open tables per IBM Informix

system

Dynamic allocation

Maximum number of open tables per user and join Dynamic allocation

Maximum locks per IBM Informix system and database Dynamic allocation

Maximum number of page cleaners 128

Maximum number of recursive synonym mappings 16

Maximum number of tables locked with LOCK TABLE

per user

32

Maximum number of cursors per user Machine specific

© 2017 IBM Corporation330

Informix – Windows O/S Limits (5)

Access Capabilities (2) Maximum Capacity per System

Maximum Enterprise Replication transaction size 4 TB

Maximum dbspace size 131 PB

Maximum sbspace size 131 PB

Maximum chunk size 4 TB

Maximum number of chunks 32 766

Maximum number of 2K pages per chunk 2 billion

Maximum number of open Simple Large Objects

(applies only to TEXT and BYTE data types)

20

Maximum number of B-tree levels 20

Maximum amount of decision support memory Machine specific

Utility support for large files 17 billion GB

Maximum number of storage spaces (dbspaces,

blobspaces, sbspaces, or extspaces)

2047

Maximum number of partitions per dbspace 4K page size: 1048445, 2K page size: 1048314 (based

on 4-bit bitmaps)

© 2017 IBM Corporation331

Informix – Windows Limits

Database characteristic Informix system default

Table lock mode Page

Initial extent size 8 pages

Next extent size 8 pages

Read-only isolation level (with database transactions) Committed Read

Read-only isolation level (ANSI-compliant database) Repeatable Read

© 2017 IBM Corporation332

Appendix G – MongoDB Recommended

Security Steps and Informix similarities

© 2021 IBM Corporation

MongoDB Steps for Security

▪ Enable Access Control and Enforce Authentication

▪ Configure Role-Based Access Control

▪ Encrypt Communication

▪ Encrypt and Protect Data

▪ Limit Network Exposure

▪ Audit System Activity

▪ Run MongoDB with a Dedicated User

▪ Run MongoDB with Secure Configuration Options

▪ Request a Security Technical Implementation Guide (where

applicable)

© 2017 IBM Corporation334

Enable Access Control and Enforce Authentication (1)

▪ In the Informix Wire Listener or thru PAM:
– You can authenticate users through the wire listener with MongoDB

authentication or with the database server, through a pluggable authentication

module (PAM) (see speaker notes).

▪ For Informix Wire Listener and MongoDB connections:
– Set the following parameters in the wire listener configuration file:

• Enable authentication:
❑ Set authentication.enable=true.

• Specify MongoDB authentication:
❑ Set db.authentication=mongodb-cr.

• Specify the MongoDB connection pool:
❑ Set database.connection.strategy=mongodb-cr.

• Set the MongoDB version:
❑ Set mongo.api.version to the version that you want.

• Optional. Specify the authentication timeout period:
❑ Set the listener.authentication.timeout parameter to the number of milliseconds for

authentication timeout.

– Restart the wire listener (over)

© 2017 IBM Corporation335

Enable Access Control and Enforce Authentication (2)

▪ For Informix Wire Listener and MongoDB connections (cont’d):

– If necessary, upgrade your user schema by running the authSchemaUpgrade

command in the admin database. For example:
• use admin

• db.runCommand({authSchemUpgrade : 1})
❑ The authSchemaUpgrade command upgrades the user schema to the MongoDB version that

is specified by the mongo.api.version parameter in the wire listener configuration file.

© 2017 IBM Corporation336

Configure Role-Based Access Control

▪ Create a user administrator first, then create additional users. Create

a unique MongoDB user for each person and application that

accesses the system.

▪ Create roles that define the exact access a set of users needs. Follow

a principle of least privilege. Then create users and assign them only

the roles they need to perform their operations. A user can be a

person or a client application.

▪ In Informix this can be done as well in SQL.
– User informix as dba or a dba given such authority can delegate roles and

subroles as necessary with scope limited to the current database.

– CREATE ROLE CustomerAdmin;
• Creates a role for a Customer Admin

– GRANT ALL ON customer to CustomerAdmin;
• Grants all authorities on the customer table to CustomerAdmin

– GRANT CustomerAdmin to john;

– SET ROLE CustomerAdmin;
• Activates the role CustomerAdmin for all assigned users.

© 2017 IBM Corporation337

Encrypt Communications (1 of 2)

▪ Database server must be configured for SSL first as a prerequisite;

see speaker notes at slide bottom.

▪ The connection between the wire listener and the database server

can be encrypted using the wire listener configuration file and SSL.
– Use the keytool utility that comes with your JRE to import a client-side

keystore database and add the public key certificate to the keystore:
• C:\work>keytool -importcert -file server_keystore_file -keystore

client_keystore_name
❑ The server_keystore_file is the name of the server key certificate file.

– Edit the wire listener properties file to update the url property to use the SSL

port that you configured for the database server and add the

SSLCONNECTION=true property to the end of the URL.

– Start the listener with the javax.net.ssl.trustStore and

javax.net.ssl.trustStorePassword system properties set:
• java -Djavax.net.ssl.trustStore="client_keystore_path" -

Djavax.net.ssl.trustStorePassword="password" -jar jsonListener.jar -config

jsonListener.properties -logfile jsonListener.log -start

• The client_keystore_path is the full path and file name of the client keystore file.

• The password is the keystore password.

© 2017 IBM Corporation338

Encrypt Communications (2 of 2)

▪ Encrypt connections between wire listener and client apps with SSL
– All client apps must use the same public key certificate file as the wire listener.

▪ Create a keystore and certificate for the wire listener
– Use a method that best fits the client application and programming language.

• E.g. you can use IBM® Global Security Kit (GSKit), OpenSSL, or Java keytool tool.

▪ Edit the wire listener properties file and restart the listener. Set the

following SSL parameters:
– listener.ssl.enable to true to enable SSL.

– listener.ssl.keyStore.file to the full path of the keystore file.

– listener.ssl.keyStore.password to the password to unlock the keystore file.

– listener.ssl.key.alias to the alias or identifier of the keystore entry.
• If the keystore contains only one entry, this parameter does not need to be set.

– listener.ssl.key.password to the password to unlock the entry from the

keystore
• If this is not set, the listener uses the listener.ssl.keyStore.password parameter.

– listener.ssl.keyStore.type if the keystore is not of type JKS (Java keystore).

▪ Configure client applications to connect to the listener over SSL.

© 2017 IBM Corporation339

Encrypt and Protect Data (1 of 2)

▪ Informix as of 12.10.xC8 fully supports Encryption at Rest in Informix

and it is done at the time of initialization or by a full restore with the

encrypt option turned on for ontape or onbar for existing instances.
– aes128, aes192, aes256

▪ Setting the DISK ENCRYPTION configuration parameter in the

Informix configuration file and restarting the server is all you have to

do to enable it for existing instances and:
– Restoring the database via ontape or onbar with the encrypt option on is all

you have to do to encrypt the storage spaces.

▪ For new instances, setting the DISK ENCRYPTION configuration

parameter in the Informix configuration file. All storage spaces

created via onspaces will be encrypted unless the –u option of

onspaces is executed.

© 2017 IBM Corporation340

Encrypt and Protect Data (2 of 2)

▪ MongoDB introduced Encryption at Rest with its implementation of

the Wired Tiger Storage Engine in version 3.2 of MongoDB.
– Informix is presently certified to version 4.2 of MongoDB 12.10.xC8 Encryption

is compatible with the Wire Listener.

– MongoDB API’s are certified to version 4.2 with Informix as of 14.10.xC6.

© 2017 IBM Corporation341

Limit Network Exposure

▪ “Ensure that MongoDB runs in a trusted network environment and

limit the interfaces on which MongoDB instances listen for incoming

connections. Allow only trusted clients to access the network

interfaces and ports on which MongoDB instances are available.”

▪ MongoDB talks about security/configuration hardening and the first

thing they mention is:
– “MongoDB Configuration Hardening - For MongoDB, ensure that HTTP status

interface and the REST API are disabled in production to prevent potential data

exposure to attackers.

– Deprecated since version 3.2: HTTP interface for MongoDB”

▪ So you can’t use REST protocol in production MongoDB or its HTTP

interface in 3.2 or greater due to data exposure risks.

© 2017 IBM Corporation342

Limit Network Exposure

▪ Informix requires a hosts.equiv file for its default authentication policy.
– File lists the remote hosts and users trusted by the computer on which the

database server is located.
• Trusted users, and users who log-in from trusted hosts, can access the computer

without supplying a password.

– Operating system uses the hosts.equiv file to determine user access without

specifying a password.

▪ Set trusted users or trusted hosts with the REMOTE_USERS_CFG

configuration parameter to allow execution of distributed queries.

▪ Authenticating at the wire listener for Informix assures proper access.

▪ Informix provides wire listener level authentication for REST,

MongoDB, and MQTT accesses.

© 2017 IBM Corporation343

Audit System Activity

▪ Both MongoDB and Informix allow you to audit any or all activities in

an instance.

▪ So in this regard they are the same.
– These activities can be quite intensive on performance manually intensive on

labor if all activity is audited.

– IBM has Guardium which overcomes this issue for both products.
• Sits off of the server and does its data collection off of the server as well.

© 2017 IBM Corporation344

Run MongoDB with a Dedicated User

▪ “Run MongoDB processes with a dedicated operating system user

account. Ensure that the account has permissions to access data but

no unnecessary permissions.”

▪ Ideally that would be either user root or user mongo.

▪ Informix has the same thing, either user informix or user root.

© 2017 IBM Corporation345

Run MongoDB with Secure Configuration Options

▪ MongoDB supports the execution of JavaScript code for certain

server-side operations:
– mapReduce, group, and $where.

• If these operations aren’t used, disable server-side scripting by using the --noscripting

option on the command line.

▪ Use only the MongoDB wire protocol on production deployments.
– Do not enable the following, all of which enable the web server interface:

• net.http.enabled

• net.http.JSONPEnabled

• net.http.RESTInterfaceEnabled

▪ Leave these disabled, unless required for backwards compatibility.
– Deprecated since version 3.2: HTTP interface for MongoDB

▪ Keep input validation enabled. MongoDB enables input validation by

default through the wireObjectCheck setting.
– This ensures that all documents stored by the mongod instance are valid BSON.

© 2017 IBM Corporation346

https://docs.mongodb.com/manual/reference/command/mapReduce/#dbcmd.mapReduce
https://docs.mongodb.com/manual/reference/command/group/#dbcmd.group
https://docs.mongodb.com/manual/reference/operator/query/where/#op._S_where
https://docs.mongodb.com/manual/reference/configuration-options/#net.http.enabled
https://docs.mongodb.com/manual/reference/configuration-options/#net.http.JSONPEnabled
https://docs.mongodb.com/manual/reference/configuration-options/#net.http.RESTInterfaceEnabled
https://docs.mongodb.com/manual/reference/configuration-options/#net.wireObjectCheck
https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod
https://docs.mongodb.com/manual/reference/glossary/#term-bson

Request a Security Technical Implementation Guide

(STIG) (where applicable)

▪ This item, when clicked here on MongoDB’s web site, takes you to a

web page where it asks you for data on yourself for either a STIG

document or again, less noticeably for a Security Reference

Architecture document, on an alternate click on the same page.
– In both cases, you will be contacted by MongoDB marketing staff.

▪ STIG is in reference to DoD (Department of Defense) requirements.

© 2017 IBM Corporation347

https://docs.mongodb.com/manual/administration/security-checklist/#run-mongodb-with-secure-configuration-options

Appendix H – Wire Listener Configuration File

Options

© 2021 IBM Corporation

Wire Listener Configuration File

▪ Settings controlling the wire listener and connection between the

client and database server are set in the wire listener configuration file

▪ The default name for the configuration file is

$INFORMIXDIR/etc/jsonListener.properties.
– You can rename this file, but the suffix must be .properties

▪ If you create a server instance during the installation process, a

configuration file that is named jsonListener.properties is

automatically created with default properties, otherwise you must

manually create the configuration file
– Use the $INFORMIXDIR/etc/jsonListener-example.properties file as a

template

▪ In the configuration file that is created during installation, and in the

template file, all of the parameters are commented out by default
– To enable a parameter, you must uncomment the row and customize the

parameter
© 2017 IBM Corporation349

Wire Listener Configuration File Parameters

▪ Required
– url

▪ Setup and configuration
– documentIdAlgorithm

– include

– listener.onException

– listener.hostName

– listener.port

– listener.type

– response.documents.count.default

– response.documents.count.maximum

– response.documents.size.maximum

– sharding.enable

– sharding.parallel.query.enable

© 2017 IBM Corporation350

http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__requrl
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfigdocidalg
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfiginclude
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfiglistexception
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfiglisthostname
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfiglistport
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfiglisttype
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfigrspdocdefct
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfigrspdocmxct
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfigrspdcszmax
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfigshardenable
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__setupconfigpsqenable

Wire Listener Configuration File Parameters

▪ Command and operation configuration
– collection.informix.options

– command.listDatabases.sizeStrategy

– update.client.strategy

– update.mode

▪ Database resource management
– database.buffer.enable

– database.create.enable

– database.dbspace

– database.locale.default

– database.log.enable

– dbspace.strategy

– fragment.count

– jdbc.afterNewConnectionCreation

© 2017 IBM Corporation351

http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__cmdoperconfig0
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__cmdoperconfig1
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__cmdoperconfig2
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__cmdoperconfig3
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtdbbuffenable1
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtdbcreaenab2
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtdbspace3
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtdblocdef4
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtdblogenab5
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtdbstrat8
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtfragcount9
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__dbresourcemgmtjdbcafter10

Wire Listener Configuration File Parameters

▪ MongoDB compatibility
– compatible.maxBsonObjectSize.enable

– mongo.api.version

– update.one.enable

▪ Performance
– delete.preparedStatement.cache.enable

– insert.batch.enable

– insert.batch.queue.enable

– insert.batch.queue.flush.interval

– index.cache.enable

– index.cache.update.interval

– insert.preparedStatement.cache.enable

– preparedStatement.cache.enable

– preparedStatement.cache.size

© 2017 IBM Corporation352

http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__mongocompat1
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__mongocompat_version
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__mongocompat2
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance9
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance1
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance2
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance3
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance4
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance5
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance6
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance7
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__performance8

Wire Listener Configuration File Parameters

▪ Security
– authentication.enable

– authentication.localhost.bypass.enable

– command.blacklist

– db.authentication

– listener.admin.ipAddress

– listener.authentication.timeout

– listener.http.accessControlAllowCredentials

– listener.http.accessControlAllowHeaders

– listener.http.accessControlAllowMethods

– listener.http.accessControlAllowOrigin

– listener.http.accessControlExposeHeaders

– listener.http.accessControlMaxAge

– listener.http.headers

– listener.http.headers.size.maximum

– listener.rest.cookie.domain

– listener.rest.cookie.httpOnly

– listener.rest.cookie.length

– listener.rest.cookie.name

© 2017 IBM Corporation353

http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security1
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security2
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securityblacklist
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitydbauth
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securityipaddress
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securityauthtimeout
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security3
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security4
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security5
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security6
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security7
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security8
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securityheaders
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__listener.http.headers.size.maximum
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security9
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security10
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security11
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security12

Wire Listener Configuration File Parameters

▪ Security
– listener.rest.cookie.path

– listener.rest.cookie.secure

– listener.ssl.algorithm

– listener.ssl.ciphers

– listener.ssl.enable

– listener.ssl.key.alias

– listener.ssl.key.password

– listener.ssl.keyStore.file

– listener.ssl.keyStore.password

– listener.ssl.keyStore.type

– listener.ssl.protocol

– security.sql.passthrough

© 2017 IBM Corporation354

http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security13
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security14
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslal
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslciphers
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslenable
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslalias
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslpassword
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslfile
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslstorepassword
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securityssltype
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__securitysslprotocol
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__security15

Wire Listener Configuration File Parameters

▪ Wire listener resource management
– cursor.idle.timeout

– listener.connectionPool.closeDelay.time

– listener.connectionPool.closeDelay.timeUnit

– listener.idle.timeout

– listener.idle.timeout.minimum

– listener.input.buffer.size

– listener.memoryMonitor.enable

– listener.memoryMonitor.allPoint

– listener.memoryMonitor.diagnosticPoint

– listener.memoryMonitor.zeroPoint

– listener.output.buffer.size

– listener.pool.admin.enable

– listener.pool.keepAliveTime

– listener.pool.queue.size

– listener.pool.size.core

– listener.pool.size.maximum

– listener.socket.accept.timeout

– listener.socket.read.timeout

© 2017 IBM Corporation355

http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__cursor.idle.timeout
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__listener.connectionPool.closeDelay.time
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__listener.connectionPool.closeDelay.timeUnit
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource1
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__listener.idle.timeout.minimum
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource2
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource20
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource21
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource22
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource23
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource3
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource24
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource4
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource5
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource6
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource7
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresouce25
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelsitresouce26

Wire Listener Configuration File Parameters

▪ Wire listener resource management
– pool.connections.maximum

– pool.idle.timeout

– pool.idle.timeunit

– pool.lenient.return.enable

– pool.lenient.dispose.enable

– pool.semaphore.timeout

– pool.semaphore.timeunit

– pool.service.interval

– pool.service.threads

– pool.service.timeunit

– pool.size.initial

– pool.size.minimum

– pool.size.maximum

– pool.type

– pool.typeMap.strategy

– response.documents.size.minimum

– timeseries.loader.connections

© 2017 IBM Corporation356

http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource8
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource9
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource10
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource27
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource29
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource11
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource12
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource13
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource30
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource14
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource15
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource16
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource17
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource18
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource19
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__wirelistresource31
http://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.json.doc/ids_json_006.htm?view=kc#ids_json_006__tsloaderconn

MongoDB Limits – Hard and Soft (2)

▪ Speaker notes on this slide have all of the details.
– A single MMAPv1 based mongod instance cannot manage a data set that

exceeds maximum virtual memory address space provided by the underlying

operating system.

© 2017 IBM Corporation357

Virtual Memory

Limitations

O/S Journaled Not Journaled

Linux 64 TB 128 TB

Windows Server

2012 R2

& Windows 8.1

64 TB 128 TB

Windows (otherwise) 4 TB 8 TB

https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod

Ability for All Clients to Access All Data Models

Traditional SQL

NoSQL - JSON

TimeSeries

MQ Series

Informix SQLI

Drivers

MongoDB Drivers

IBM DRDA

Drivers

© 2017 IBM Corporation358

Hybrid access: From MongoAPI to relational tables.

▪ You want to develop an application with MongoAPI, but…
– You already have relational tables with data.

– You have views on relational data

– You need to join tables

– You need queries with complex expressions. E.g. OLAP window functions.

– You need multi-statement transactions

– You need to exploit stored procedure

– You need federated access to other data

– You have timeseries data.

© 2017 IBM Corporation359

Mongo Application

IBM Wire Listener

IDXs

Logs

Enterprise replication + Flexible Grid + Sharding

Distributed
Queries

Informix

Tables

Tables

IDXs

Relational Tables

JSON Collections

SELECT bson_new(bson, ‘{}’) FROM customer

WHERE bson_value_lvarchar(bson,‘state’)=“MO”

db.customer.find({state:”MO”}) db.partners.find({state:”CA”})

SELECT * FROM partners WHERE state=“CA”

Customer

partners

JSON JSON

Access RelationalAccess JSON

MongoAPI Accessing Both NoSQL and Relational

Tables

© 2017 IBM Corporation360

How to Convert Relational Data as JSON Documents

▪ Relational data can be treated as structured JSON documents;

column name-value becomes key-value pair.

▪ SELECT partner, pnum, country from partners;

▪ partner pnum Country

▪ Pronto 1748 Australia

▪ Kazer 1746 USA

▪ Diester 1472 Spain

▪ Consultix 1742 France

▪ {partner: “Pronto”, pnum:”1748”, Country: “Australia”}

▪ {partner: “Kazar”, pnum:”1746”, Country: “USA”}

▪ {partner: “Diester”, pnum:”1472”, Country: “Spain”}

▪ {partner: “Consultix”, pnum:”1742”, Country: “France”}

▪ Informix automatically translates the results of a relational query to

JSON/BSON form.

© 2017 IBM Corporation361

MongoAPI Accessing Both NoSQL and Relational Tables

▪ Typically NoSQL does not involve transactions

– In many cases, a document update is atomic, but not the application statement

– Example

• 7 targeted for deletion, but only 4 are removed

▪ Informix-NoSQL provides transactions on all application statements

– Each server operation INSERT, UPDATE, DELETE, SELECT will automatically

be committed after each operation.

– In Informix there is away to create multi-statement transactions is to utilize a

stored procedure

▪ Default isolation level is DIRTY READ

▪ All standard isolation level support

© 2017 IBM Corporation362

Accessing Data in Relational Tables

db.partners.find({name:”Acme”}, {pnum:1, country:1});

SELECT pnum, country FROM partners WHERE name = “Acme”;

db.partners.find({name:”Acme”},
{pnum:1, country:1}).sort({b:1})

SELECT pnum,country FROM partners
WHERE name=“Acme” ORDER BY b ASC

CREATE TABLE partners(pnum int, name varchar(32),
country varchar(32));

© 2017 IBM Corporation363

Accessing data in relational tables.

db.partners.save({pnum:1632,name:”EuroTop”,Country:“Belgium”});

INSERT into partners(pnum, name, country) values
(1632, ”EuroTop”, “Belgium”);

db.partners.delete({name:”Artics”});

DELETE FROM PARTNERS WHERE name = “Artics”;

db.partners.update({country:”Holland”},
{$set:{country:”Netherland”}}, {multi: true});

UPDATE partners SET country = “Netherland”
WHERE country = “Holland”;

© 2017 IBM Corporation364

Views and Joins

▪ Create a view between the existing partner table and a new

pcontact table

▪ Run the query across the view

create table pcontact(pnum int, name varchar(32), phone
varchar(32));

insert into pcontact values(1748,"Joe Smith","61-123-4821");

create view partnerphone(pname, pcontact, pphone) as select a.name,
b.name, b.phone FROM pcontact b left outer join partners a on
(a.pnum = b.pnum);

db.partnerphone.find({pname:"Pronto"})

{ "pname":"Pronto", "pcontact":"Joe Smith", "pphone":"61-123-4821"}

© 2017 IBM Corporation365

Seamless federated access

▪ create database newdb2;

▪ create synonym oldcontactreport for newdb:contactreport;

> use newdb2

> db.oldcontactreport.find({pname:"Pronto"})

{ "pname" : "Pronto", "pcontact" : "Joel Garner", "totalcontacts" : 2 }

{ "pname" : "Pronto", "pcontact" : "Joe Smith", "totalcontacts" : 2 }

SELECT data FROM oldcontactreport WHERE bson_extract(data,
'pname') = “Pronto”;

▪ create synonym oldcontactreport for custdb@nydb:contactreport;

© 2017 IBM Corporation366

Get results from a stored procedure thru a view in Nosql.
create function "keshav".p6() returns int, varchar(32);
define x int; define y varchar(32);
foreach cursor for select tabid, tabname into x,y from systables

return x,y with resume;
end foreach;
end procedure;
create view "keshav".v6 (c1,c2) as
select x0.c1 ,x0.c2 from table(function p6())x0(c1,c2);

▪ db.v6.find().limit(5)
{ "c1" : 1, "c2" : "systables" }
{ "c1" : 2, "c2" : "syscolumns" }
{ "c1" : 3, "c2" : "sysindices" }
{ "c1" : 4, "c2" : "systabauth" }
{ "c1" : 5, "c2" : "syscolauth" }

© 2017 IBM Corporation367

Access Timeseries data

create table daily_stocks
(stock_id integer, stock_name lvarchar,
stock_data timeseries(stock_bar));

-- Create virtual relational table on top (view)

EXECUTE PROCEDURE TSCreateVirtualTab('daily_stocks_virt',
'daily_stocks', 'calendar(daycal),origin(2011-01-03 00:00:00.00000)');

create table daily_stocks_virt
(stock_id integer,
stock_name lvarchar,
timestamp datetime year to fraction(5),
high smallfloat,
low smallfloat,
final smallfloat,
vol smallfloat);

© 2017 IBM Corporation368

Access Timeseries data

db.daily_stocks_virt.find({stock_name:"IBM"})
{ "stock_id" : 901, "stock_name" : "IBM", "timestamp" : ISODate("2011-01-03T06:0
0:00Z"), "high" : 356, "low" : 310, "final" : 340, "vol" : 999 }
{ "stock_id" : 901, "stock_name" : "IBM", "timestamp" : ISODate("2011-01-04T06:0
0:00Z"), "high" : 156, "low" : 110, "final" : 140, "vol" : 111 }
{ "stock_id" : 901, "stock_name" : "IBM", "timestamp" : ISODate("2011-01-06T06:0
0:00Z"), "high" : 99, "low" : 54, "final" : 66, "vol" : 888 }

© 2017 IBM Corporation369

You want to perform complex analytics on JSON data

▪ BI Tools like Cognos, Tableau generate SQL on data sources.

▪ Option 1: Do ETL

▪ Need to expose JSON data as views so it’s seen as a database object.
– We use implicit casting to convert to compatible types

– The references to non-existent key-value pair returns NULL

▪ Create any combination of views
– A view per JSON collection

– Multiple views per JSON collection

– Views joining JSON collections, relational tables and views.

▪ Use these database objects to create reports, graphs, etc.

© 2017 IBM Corporation370

ODBC, JDBC connections

Informix

Tables

Tables

Relational Tables

JSON Collections

Customer

partners

Analytics SQL & BI Applications

Orders

CRM

Inventory

Tables
Tables & views

© 2017 IBM Corporation371

Benefits of Hybrid Power

Access consistent data from its source
Avoid ETL, continuous data sync and conflicts.
Exploit the power of SQL, MongoAPI seamlessly
Exploit the power of RDBMS technologies in MongoAPI:

– Informix Warehouse accelerator,
– Cost based Optimizer & power of SQL
– R-tree indices for spatial, Lucene text indexes, and more.

Access all your data thru any interface: MongoAPI & SQL
Store data in one place and efficiently transform and use them on

demand.
Existing SQL based tools and APIs can access new data in JSON

© 2017 IBM Corporation372

